Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Exp Ther Med ; 28(4): 386, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39161611

RESUMEN

Angiomyxoma (AM) occurs almost exclusively in the soft tissues of the pelvic and perineal regions. AM is a highly uncommon condition that can be easily misdiagnosed when it is present in other regions of the body. The current study presents a case in which AM of the liver coexisted with focal nodular hyperplasia (FNH). A 56-year-old woman presented with two space-occupying lesions of the liver without any other clinical symptoms, and it was not easy to definitively diagnose the two intrahepatic lesions by imaging examinations. Due to the low incidence of AM in the liver, precise and clear clinical information on the condition is still unavailable, and the lesion was initially misdiagnosed as other hepatic tumors preoperatively. Once a tumor resection had been performed, a histopathological examination revealed that the microscopic features of the lesions were consistent with those of AM and FNH. The patient was followed up for 1 year, and no recurrence or metastasis was found. Surgical excision is an effective treatment for AM, and long-term follow-up is essential due to the risk of recurrence. The joint presentation of AM and FNH is rare in clinical practice, and although FNH of the liver is commonly reported, the difficulty of diagnosis increases when both conditions occur at the same time. Therefore, it is necessary to assist clinicians in making informed decisions regarding diagnosis and treatment.

3.
J Fungi (Basel) ; 10(7)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-39057326

RESUMEN

The primary functions of mitochondria are to produce energy and participate in the apoptosis of cells, with them being highly conserved among eukaryotes. However, the composition of mitochondrial genomes, mitochondrial DNA (mtDNA) replication, and mitochondrial inheritance varies significantly among animals, plants, and fungi. Especially in fungi, there exists a rich diversity of mitochondrial genomes, as well as various replication and inheritance mechanisms. Therefore, a comprehensive understanding of fungal mitochondria is crucial for unraveling the evolutionary history of mitochondria in eukaryotes. In this review, we have organized existing reports to systematically describe and summarize the composition of yeast-like fungal mitochondrial genomes from three perspectives: mitochondrial genome structure, encoded genes, and mobile elements. We have also provided a systematic overview of the mechanisms in mtDNA replication and mitochondrial inheritance during bisexual mating. Additionally, we have discussed and proposed open questions that require further investigation for clarification.

4.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38928482

RESUMEN

Inflammatory responses and tumor developments are closely related, with interleukin-6 (IL-6) playing important roles in both processes. IL-6 has been extensively identified as a potential tumor biomarker. This study developed an isotope dilution mass spectrometry (IDMS) method for quantifying IL-6 based on signature peptides. These peptides were screened by excluding those with missed cleavage or post-translational modification. The method's accuracy was verified using amino acid-based IDMS, in which purified IL-6 protein samples were quantified after hydrolyzing them into amino acids, and no significant difference was observed (p-value < 0.05). The method demonstrated good linearity and sensitivity upon testing. The specificity and matrix effect of the method were verified, and a precision study showed that the coefficient of variation was less than 5% for both the intra-day and inter-day tests. Compared to immunoassays, this method offers distinct advantages, such as the facilitation of multi-target analysis. Furthermore, the peptides used in this study are much more convenient for storage and operation than the antibodies or purified proteins typically used in immunoassays.


Asunto(s)
Interleucina-6 , Espectrometría de Masas , Interleucina-6/análisis , Humanos , Espectrometría de Masas/métodos , Péptidos/análisis , Reproducibilidad de los Resultados
5.
Microorganisms ; 11(8)2023 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-37630637

RESUMEN

Indole-3-acetic acid (IAA) belongs to the family of auxin indole derivatives. IAA regulates almost all aspects of plant growth and development, and is one of the most important plant hormones. In microorganisms too, IAA plays an important role in growth, development, and even plant interaction. Therefore, mechanism studies on the biosynthesis and functions of IAA in microorganisms can promote the production and utilization of IAA in agriculture. This mini-review mainly summarizes the biosynthesis pathways that have been reported in microorganisms, including the indole-3-acetamide pathway, indole-3-pyruvate pathway, tryptamine pathway, indole-3-acetonitrile pathway, tryptophan side chain oxidase pathway, and non-tryptophan dependent pathway. Some pathways interact with each other through common key genes to constitute a network of IAA biosynthesis. In addition, functional studies of IAA in microorganisms, divided into three categories, have also been summarized: the effects on microorganisms, the virulence on plants, and the beneficial impacts on plants.

6.
Int J Biol Macromol ; 252: 126199, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37562477

RESUMEN

The incidence of diabetes, as a metabolic disease characterized by high blood sugar levels, is increasing every year. The predominantly western medicine treatment is associated with certain side effects, which has prompted people to turn their attention to natural active substances. Natural polysaccharide is a safe and low-toxic natural substance with various biological activities. Hypoglycemic activity is one of the important biological activities of natural polysaccharides, which has great potential for development. A systematic review of the latest research progress and possible molecular mechanisms of hypoglycemic activity of natural polysaccharides is of great significance for better understanding them. In this review, we systematically reviewed the relationship between the hypoglycemic activity of polysaccharides and their structure in terms of molecular weight, monosaccharide composition, and glycosidic bonds, and summarized underlying molecular mechanisms the hypoglycemic activity of natural polysaccharides. In addition, the potential mechanisms of natural polysaccharides improving the complications of diabetes were analyzed and discussed. This paper provides some valuable insights and important guidance for further research on the hypoglycemic mechanisms of natural polysaccharides.


Asunto(s)
Hipoglucemiantes , Polisacáridos , Humanos , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Hipoglucemiantes/química , Polisacáridos/farmacología , Polisacáridos/uso terapéutico , Polisacáridos/química , Monosacáridos , Peso Molecular
7.
J Fungi (Basel) ; 9(5)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37233304

RESUMEN

The smut fungus Ustilago esculenta obligately parasitizes Zizania latifolia and induces smut galls at the stem tips of host plants. Previous research identified a putative secreted protein, Ue943, which is required for the biotrophic phase of U. esculenta but not for the saprophytic phase. Here, we studied the role of Ue943 during the infection process. Conserved homologs of Ue943 were found in smut fungi. Ue943 can be secreted by U. esculenta and localized to the biotrophic interface between fungi and plants. It is required at the early stage of colonization. The Ue943 deletion mutant caused reactive oxygen species (ROS) production and callose deposition in the host plant at 1 and 5 days post inoculation, which led to failed colonization. The virulence deficiency was restored by overexpressing gene Ue943 or Ue943:GFP. Transcriptome analysis further showed a series of changes in plant hormones following ROS production when the host plant was exposed to ΔUe943. We hypothesize that Ue943 might be responsible for ROS suppression or avoidance of recognition by the plant immune system. The mechanism underlying Ue943 requires further study to provide more insights into the virulence of smut fungi.

8.
J Chromatogr Sci ; 61(6): 539-545, 2023 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-35325046

RESUMEN

In this study, secondary metabolites of Eurotium cristatum were isolated and purified by high-speed counter-current chromatography (HSCCC), and their hypoglycemic activities were studied. The general-useful estimate of solvent systems (GUESS) for counter-current chromatography was employed to select the appropriate solvent systems of n-hexane-ethyl acetate-methanol-water (HEMW, 4:6:5:5, v/v/v/v) for HSCCC practice, and three compounds were separated from the crude ethyl acetate extract of E. cristatum in one single step; 6.1 mg of Compounds 1, 5.6 mg of Compound 2 and 3.8 mg of Compound 3 were obtained from 100 mg of crude extract with a stationary phase retention of 75%. The compounds were then identified as emodin methyl ether, chrysophanol and emodin, respectively. The activity of the target compounds in the secondary metabolites of E. cristatum was verified by testing their inhibition on α-glucosidase activity and molecular docking simulation. The results showed that emodin, chrysophanol and emodin methyl ether had significant inhibitory effects on the α-glucosidase activity. This work confirmed the effectiveness of HSCCC in the separation of compounds in complex extracts and provided reference for further research and application of E. cristatum.


Asunto(s)
Distribución en Contracorriente , Emodina , Distribución en Contracorriente/métodos , Hipoglucemiantes/farmacología , Emodina/farmacología , Simulación del Acoplamiento Molecular , alfa-Glucosidasas , Solventes/química , Cromatografía Líquida de Alta Presión/métodos , Extractos Vegetales/farmacología , Extractos Vegetales/química
9.
Hum Exp Toxicol ; 41: 9603271221126494, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36473706

RESUMEN

BACKGROUND: Circular RNAs (circRNAs) have been uncovered to play an important regulatory function in the tumorigenesis of intrahepatic cholangiocarcinoma (ICC). Hsa_circ_0,019,054 was found to be increased in ICC. Here, we aimed to explore the action and mechanism of hsa_circ_0,019,054 in ICC carcinogenesis. METHODS: Quantitative real-time PCR (qRT-PCR) and western blotting were used to detect the levels of genes and proteins. The functional experiments were performed using in vitro 5-ethynyl-2'-deoxyuridine (EdU) assay, cell counting Kit-8 (CCK-8) assay, flow cytometry, and in vivo murine xenograft model. The glycolysis was analyzed by detecting glucose uptake and lactate level. The binding between miR-340-5 p and hsa_circ_0,019,054 or HIF1A (Hypoxia-inducible factor 1-alpha) was validated using pull-down, dual-luciferase reporter and RNA immunoprecipitation assays. RESULTS: Hsa_circ_0,019,054 expression was higher in ICC tissues and cells. Functionally, hsa_circ_0,019,054 silencing could suppress ICC cell proliferation and glycolysis active, as well as induce apoptosis. Mechanistically, hsa_circ_0,019,054 was demonstrated to act as a sponge for miR-340-5 p, which directly targeted HIF1A. Hsa_circ_0,019,054/miR-340-5 p/HIF1A formed a feedback loop. HIF1A was up-regulated, while miR-340-5 p was decreased in ICC tissues and cells. MiR-340-5 p re-expression attenuated ICC cell growth. Besides that, rescue experiments suggested that HIF1A overexpression or miR-340-5 p knockdown reversed the anti-proliferation and glycolysis arrest effects mediated by hsa_circ_0,019,054 silencing. Importantly, hsa_circ_0,019,054 silencing also impeded the growth of ICC in nude mice. CONCLUSION: Hsa_circ_0,019,054 deficiency could attenuate the proliferation and glycolysis of ICC cells via miR-340-5 p/HIF1A axis.


Asunto(s)
Transformación Celular Neoplásica , MicroARNs , Humanos , Animales , Ratones , Ratones Desnudos , Carcinogénesis/genética , Proliferación Celular , MicroARNs/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética
10.
Anal Methods ; 14(46): 4822-4831, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36383038

RESUMEN

The selection of an appropriate solvent system is the most crucial step in high-speed countercurrent chromatography (HSCCC) separation. The compound polarity plays an important role in HPLC analysis and HSCCC separation, and it can be calculated by the HPLC polarity parameter model and the average polarity of the HSCCC solvent system, respectively. However, flow rates, columns and methanol concentrations of the HPLC experiment can influence the calculation of the compound polarity. Therefore, the applicability and accuracy of the HPLC polarity parameter model still needed to be extensively validated. We chose 14 compounds to conduct the shake-flask experiments and HPLC analysis on, such as apigenin, honokiol, phloridzin and dihydromyricetin. The HPLC analysis results showed that different flow rates and columns have negligible effects on the calculated compound polarities. However, there was a certain variation trend in the calculated polarities with different methanol concentrations. Although the polarity values of some compounds showed a difference between the HPLC analysis and shake-flask experiments, their partition coefficients (K) in the HSCCC solvent systems were still located in the range of 0.5 < K < 2.0. Guided by the HPLC polarity parameter model, the appropriate HSCCC solvent systems for mangosteen peel and Hypericum sampsonii Hance were selected, and the two main components (mangostin and quercetin) were isolated from their extracts, respectively. The separation results showed that the predicted compound polarities were sufficient to meet the HSCCC separation requirements. Meanwhile, this method required only 1 to 2 HPLC analyses with reference compounds, greatly improved the efficiency of the HSCCC solvent system selection, and shortened the experimental time. The polarity parameter model was a fast and efficient analysis method for the selection of an appropriate HSCCC solvent system.


Asunto(s)
Distribución en Contracorriente , Hypericum , Distribución en Contracorriente/métodos , Cromatografía Líquida de Alta Presión/métodos , Solventes/química , Metanol/química
11.
Commun Biol ; 5(1): 698, 2022 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-35835849

RESUMEN

Prohibitins are highly conserved eukaryotic proteins in mitochondria that function in various cellular processes. The roles of prohibitins in fungal virulence and their regulatory mechanisms are still unknown. Here, we identified the prohibitins ChPhb1 and ChPhb2 in a plant pathogenic fungus Colletotrichum higginsianum and investigated their roles in the virulence of this anthracnose fungus attacking crucifers. We demonstrate that ChPhb1 and ChPhb2 are required for the proper functioning of mitochondria, mitophagy and virulence. ChPhb1 and ChPhb2 interact with the autophagy-related protein ChATG24 in mitochondria, and ChATG24 shares similar functions with these proteins in mitophagy and virulence, suggesting that ChATG24 is involved in prohibitin-dependent mitophagy. ChPhb1 and ChPhb2 modulate the translocation of ChATG24 into mitochondria during mitophagy. The role of ChATG24 in mitophagy is further confirmed to be conserved in plant pathogenic fungi. Our study presents that prohibitins regulate fungal virulence by mediating ATG24-assisted mitophagy.


Asunto(s)
Mitofagia , Prohibitinas , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Virulencia
12.
Pathol Res Pract ; 230: 153732, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34974242

RESUMEN

BACKGROUND: Recent studies indicate that circular RNA (circRNA) serves important roles in the development of intrahepatic cholangiocarcinoma (ICC). However, the role of circRNA reticulon 4 interacting protein 1 (circRTN4IP1) in ICC progression remains unknown. METHODS: Expression of circRTN4IP1, microRNA-541-5p (miR-541-5p), hypoxia inducible factor 1 subunit alpha (HIF1A) and other indicated protein markers was detected by quantitative real-time polymerase chain reaction or Western blot. The functional effects of circRTN4IP1 knockdown in ICC cells were analyzed by cell counting kit-8, cell colony formation, flow cytometry analysis, Western blot, glucose and lactate kit assays. The positive expression rate of HIF1A was detected by immunohistochemistry assay. The interaction between miR-541-5p and circRTN4IP1 or HIF1A was identified by dual-luciferase reporter, RNA immunoprecipitation or RNA pull-down assays. Xenograft mouse model assay was performed to determine the effect of circRTN4IP1 depletion on tumor formation. RESULTS: In contrast, ICC tissues and cells showed high expression of circRTN4IP1 and HIF1A, but low expression of miR-541-5p. Knockdown of circRTN4IP1 led to repression of cell proliferation and glucose metabolism, but promotion of cell apoptosis; however, circRTN4IP1 overexpression had opposite effects. In mechanism, circRTN4IP1 acted as a sponge for miR-541-5p, which was found to target HIF1A. MiR-541-5p inhibitors could remit circRTN4IP1 knockdown-mediated action. Also, HIF1A participated in the regulation of miR-541-5p in ICC progression. In support, circRTN4IP1 depletion impeded tumor formation in vivo. CONCLUSION: CircRTN4IP1 knockdown inhibited ICC cell malignancy by miR-541-5p/HIF1A axis, providing us with a reliable target for the therapy of ICC.


Asunto(s)
Neoplasias de los Conductos Biliares/metabolismo , Colangiocarcinoma/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , MicroARNs/metabolismo , ARN Circular/metabolismo , Animales , Apoptosis , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/patología , Línea Celular Tumoral , Proliferación Celular , Colangiocarcinoma/genética , Colangiocarcinoma/patología , Progresión de la Enfermedad , Metabolismo Energético , Regulación Neoplásica de la Expresión Génica , Glucosa/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs/genética , ARN Circular/genética , Transducción de Señal , Carga Tumoral
13.
Environ Microbiol ; 24(3): 1093-1116, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34472183

RESUMEN

Colletotrichum higginsianum is an important fungal pathogen causing anthracnose disease of cruciferous plants. In this study, we characterized a putative orthologue of yeast SPE1 in C. higginsianum, named ChODC. Deletion mutants of ChODC were defective in hyphal and conidial development. Importantly, deletion of ChODC significantly affected appressorium-mediated penetration in C. higginsianum. However, polyamines partially restore appressorium function and virulence indicating that loss of ChODC caused significantly decreased virulence by the crosstalk between polyamines and other metabolic pathways. Subsequently, transcriptomic and metabolomic analyses demonstrated that ChODC played an important role in metabolism of various carbon and nitrogen compounds including amino acids, carbohydrates and lipids. Along with these clues, we found deletion of ChODC affected glycogen and lipid metabolism, which were important for conidial storage utilization and functional appressorium formation. Loss of ChODC affected the mTOR signalling pathway via modulation of autophagy. Interestingly, cAMP treatment restored functional appressoria to the ΔChODC mutant, and rapamycin treatment also stimulated formation of functional appressoria in the ΔChODC mutant. Overall, ChODC was associated with the polyamine biosynthesis pathway, as a mediator of cAMP and mTOR signalling pathways to regulate appressorium function. Our study provides evidence of a link between ChODC and the cAMP signalling pathway and defines a novel mechanism by which ChODC regulates infection-associated autophagy and plant infection by fungi.


Asunto(s)
Ornitina Descarboxilasa , Enfermedades de las Plantas , Colletotrichum , Proteínas Fúngicas/metabolismo , Redes y Vías Metabólicas/genética , Ornitina Descarboxilasa/metabolismo , Enfermedades de las Plantas/microbiología , Poliaminas , Esporas Fúngicas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Virulencia/genética
14.
J Fungi (Basel) ; 9(1)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36675853

RESUMEN

Ustilago esculenta is a smut fungus that obligately infects Zizania latifolia and stimulates tissue swelling to form galls. Unlike T-type, MT-type U. esculenta can only proliferate within plant tissues and infect the offspring of their host. Production of telispores, haploid life, and plant cuticle penetration are not essential for it, which may lead to the degeneration in these processes. Transcriptome changes during the mating of T- and MT-type U. esculenta were studied. The functions of several secreted proteins were further confirmed by knock-out mutants. Our results showed that MT-type U. esculenta can receive environmental signals in mating and circumstance sensing as T-type does. However, MT-type U. esculenta takes a longer time for conjunction tube formation and cytoplasmic fusion. A large number of genes encoding secreted proteins are enriched in the purple co-expression module. They are significantly up-regulated in the late stage of mating in T-type U. esculenta, indicating their relationship with infecting. The knock-out of g6161 (xylanase) resulted in an attenuated symptom. The knock-out of g943 or g4344 (function unidentified) completely blocked the infection at an early stage. This study provides a comprehensive comparison between T- and MT-type during mating and identifies two candidate effectors for further study.

15.
Viruses ; 13(12)2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34960677

RESUMEN

The Chinaberry tree, a member of the Meliaceae family, is cultivated in China for use in traditional medicines. In 2020, Chinaberry trees with leaf deformation symptoms were found in Hangzhou, Zhejiang province, China. In order to identify possible pathogenic viruses, a symptomatic sample was subjected to deep sequencing of small interfering RNAs. Assembly of the resulting sequences led to the identification of a novel badnavirus, provisionally designated Chinaberry tree badnavirus 1 (ChTBV1). With the recent development of China's seedling industry and increasing online shopping platforms, the risk of tree virus transmission has increased substantially. Therefore, it is important to detect the occurrence of ChTBV1 to ensure the safety of the Chinaberry tree seedling industry. Here, we describe the development and validation of a sensitive and robust method relying on a loop-mediated isothermal amplification (LAMP) assay, targeting a 197 nt region, to detect ChTBV1 from Chinaberry tree leaves. The LAMP assay was also adapted for rapid visualization of results by a lateral flow dipstick chromatographic detection method.


Asunto(s)
Badnavirus/clasificación , Badnavirus/aislamiento & purificación , Melia azedarach/virología , Enfermedades de las Plantas/virología , Árboles/virología , China , Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , Filogenia , Hojas de la Planta/virología , Sensibilidad y Especificidad , Análisis de Secuencia de ADN
16.
Exp Ther Med ; 22(6): 1473, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34737813

RESUMEN

Tea polyphenols (TPs) are the major bioactive extract from green tea that have been extensively reported to prevent and treat oxidative stress damage. In previous studies, TPs have been demonstrated to protect cells against oxidative injury induced by hydrogen peroxide (H2O2). However, the underlying mechanism remains unclear. The aim of the current study was to investigate whether the protective and regulatory effects of TPs on oxidative stress damage were dependent on the mammalian STE20-like protein kinase (Mst)/nuclear factor (erythroid-derived 2)-like 2 (Nrf2) axis and the Kelch-like ECH-associated protein 1 (Keap1)/Nrf2/heme oxygenase 1 (HO-1) pathway in RAW264.7 cells, a murine macrophage cell line. Maintaining a certain range of intracellular reactive oxygen species (ROS) levels is critical to basic cellular activities, while excessive ROS generation can override the antioxidant capacity of the cell and result in oxidative stress damage. The inhibition of ROS generation offers an effective target for preventing oxidative damage. The results of the present study revealed that pretreatment with TPs inhibited the production of intracellular ROS and protected RAW264.7 cells from H2O2-induced oxidative damage. TPs was also demonstrated to attenuate the production of nitric oxide and malondialdehyde and increase the levels of antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase). In addition, following TPs treatment, alterations in Mst1/2 at the mRNA and protein level inhibited the production of ROS and promoted the self-regulation of antioxidation. TPs-induced Keap1 gene downregulation also increased the expression of Nrf2 and HO-1. Collectively, the results of the present study demonstrated that TPs provided protection against H2O2-induced oxidative injury in RAW264.7 cells.

17.
Plant Dis ; 2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34309405

RESUMEN

Ophiopogon japonicus (Linn. f.) Ker-Gawl, a traditional Chinese medicinal plant, is widely cultured in China. The root of O. japonicus, is used as the main ingredient in many presriptions. It is rich in chemical components for steroidal saponins, homoisoflavonoids and polysaccharides, which have various pharmacological activities, such as cardiovascular protection, anti-inflammation and anti-diabetes (Chen. et al. 2016). In May and July for 2018 and 2019, the symptoms of black spot on O. japonicus were observed with an incidence of 40% in Cixi County, Zhejiang Province, China. The pathogen mainly infected leaves causing severe black spots, which resulted in a 28% yield loss per acre. At the early stage of the disease, the tip of the leaf began to turn yellow, then the discoloration gradually spread to the base of the leaf and finally the whole leaf turned reddish brown with visible black spot. Symptomatic leaves were cut into small pieces (1.0 cm × 1.0 cm) and disinfected successively by submersion in 75% ethanol for 30s and 1% NaClO for 30s under aseptic conditions. After rinsing with sterile water three times and air drying, segments were placed on potato dextrose agar (PDA), and incubated at 28 ℃ in dark for a week. Then, pathogen on the PDA were transferred onto potato carrot agar (PCA), and incubated at 23 ℃ under the condition of alternation of day (12 h) and night (12 h) for a week. Colonies on PDA were dark gray in the center surrounded by white to gray on the upper side, and black with white margins on the back of the plate. Colonies on PCA were grayish with sparse hyphae. The conidia were obclavate or ellipsoid, pale brown, with 3~8 transverse septa and 1~4 longitudinal septa. Conidiophores were septate, arising singly, and measured (17.0~81.0) × (8.0~23.5) µm, Most conidia had a conical or columnar beak, approximately (0~23.5) × (2.5~9.0) µm in size. According to morphological and cultural characteristics, these isolates were preliminarily identified as Alternaria alternata. A. alternata is one of the most typical plant pathogen, more than 95% of which facultatively parasitize on plants, causing disease in numerous crops. To further confirm identification of pathogens, the internal transcribed spacer region (ITS), translation elongation factor 1-α gene (EF-1α), RNA polymerase Ⅱ second largest subunit (RPB2), major allergen Alt a 1 gene (Alt a 1), Histon 3 gene (His) and plasma membrane ATPase (ATP)were amplified with primer pairs ITS1/ITS4, EF1-728F/EF1-986R, RPB2-7cr/RPB2-5f2, Alt-for/Alt-rev, His 3-F/His 3-R, ATP-F/ATP-R (Lawrence D.P. et al. 2013; Hong, S.G., et al. 2005). BLASTN analysis of NCBI using ITS (Accession NO. MW989987), Alt a1 (Accession NO. MW995953), EF-1α (Accession NO.MW995955), ATP (Accession NO.MW995957), His (Accession NO. MW995954) and RPB2 (Accession NO. MW995956) showed 100%, 100%, 97%, 99%, 99% and 97% identity to A. alternata MN249500.1, MN304714.1, MK637432.1, MK804115.1, MK460236.1, MK605888.1, respectively. To verify pathogenicity, healthy plants (1-year-old) of O. japonicus in ten pots were spray-inoculated with conidial suspension (1 × 106 conidia/ml). Ten plants, which were treated with sterile water, were used as the control. All plants were maintained in a climatic chamber (26 ± 1 ℃, 70-80% relative humidity and a photoperiod of 16:8 [L: D] h). Fourteen days later, all inoculated plants showed typical symptoms of black spot identical to those observed in the fields. Control plants remained symptomless and healthy. The pathogenicity analysis was repeated three times. Pathogens re-isolated from symptomatic plants were identified as A. alternata by morphology observation and sequence analysis. To our knowledge, this is the first report of black spot caused by A. alternata on O. japonicus in Zhejiang, China.

18.
Molecules ; 26(8)2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33921423

RESUMEN

Malus hupehensis (M. hupehensis), an edible and medicinal plant with significant antioxidant and hypoglycemic activity, has been applied to new resource foods. However, the structural characterization and biological effects of its polysaccharides (MHP) are less known. The optimum extraction parameters to achieve the highest extraction efficiency (47.63%), the yield (1.68%) and purity of MHP (89.6%) by ultrasonic-assisted aqueous two-phase system (ATPS) were obtained under the liquid-to-solid ratio of 23 g/mL, ultrasonic power of 65 W, and ultrasonic time of 33 min. According to the analysis results, MHP was composed of Man, GlcA, Rha, GalA, Glc, Gal, Xyl, Ara, and Fuc, in which Ara and Gal were the main components, and the content of GlcA was the lowest. In in vitro activity analysis, MHP showed a significant antioxidant capacity, and an inhibition activity of α-glucosidase and the advanced glycation end products (AGEs) formation in the BSA/Glc reaction model. MHP interacted with α-glucosidase and changed the internal microenvironment of the enzyme, and inhibited the AGEs formation, which provides more evidence for the antihyperglycemic mechanism of MHP. The results suggest that ATPS is an efficient and environmentally friendly solvent system, and M. hupehensis has broad application prospects in functional foods, healthcare products, and pharmaceuticals.


Asunto(s)
Malus/química , Polisacáridos/aislamiento & purificación , Ultrasonido , Agua/química , Antioxidantes/farmacología , Dicroismo Circular , Etanol/química , Productos Finales de Glicación Avanzada/metabolismo , Inhibidores de Glicósido Hidrolasas/farmacología , Hipoglucemiantes/farmacología , Monosacáridos/análisis , Extractos Vegetales/farmacología , Sales (Química)/química , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier
19.
Foods ; 10(3)2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33804322

RESUMEN

An efficient strategy for the selection of active compounds from blueberry based on counter-current fractionation and bioassay-guided separation was established in this study. Blueberry extract showed potential α-glucosidase inhibitory activity. After extraction by different solvents, the active components were enriched in water. The water extract was divided into six fractions via high-speed counter-current chromatography to further track the active components. Results indicated that the α-glucosidase inhibition rate of F4 was remarkable higher than the others. Cyanidin-3-glucoside (C3G) with a purity of 94.16% was successfully separated from F4 through column chromatography, and its structure was identified by ultraviolet spectral, Fourier-transformed infrared spectroscopy, high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry, 1H nuclear magnetic resonance (NMR), and 13C NMR. The interaction mechanism between C3G and α-glucosidase was clearly characterized and described by spectroscopic methods, including fluorescence and circular dichroism (CD) in combination with molecular docking techniques. C3G could spontaneously bind with α-glucosidase to form complexes by hydrogen bonds. The secondary structure of α-glucosidase changed in varying degrees after complexation with C3G. The α-helical and ß-turn contents of α-glucosidase decreased, whereas the ß-sheet content and the irregular coil structures increased. Molecular docking speculated that C3G could form hydrogen bonds with α-glucosidase by binding to the active sit (Leu 313, Ser 157, Tyr 158, Phe 314, Arg 315, and two Asp 307). These findings may be useful for the development of functional foods to tackle type 2 diabetes.

20.
Environ Microbiol ; 23(9): 4998-5013, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33587785

RESUMEN

Long non-coding RNAs (lncRNAs) play an important role in biological processes but regulation and function of lncRNAs remain largely unelucidated, especially in fungi. Ustilaginoidea virens is an economically important fungus causing a devastating disease of rice. By combining microscopic and RNA-seq analyses, we comprehensively characterized lncRNAs of this fungus in infection and developmental processes and defined four serial typical stages. RNA-seq analyses revealed 1724 lncRNAs in U. virens, including 1084 long intergenic non-coding RNAs (lincRNAs), 51 intronic RNAs (incRNAs), 566 natural antisense transcripts (lncNATs) and 23 sense transcripts. Gene Ontology enrichment of differentially expressed lincRNAs and lncNATs demonstrated that these were mainly involved in transport-related regulation. Functional studies of transport-related lncRNAs revealed that UvlncNAT-MFS, a cytoplasm localized lncNAT of a putative MFS transporter gene, UvMFS, could form an RNA duplex with UvMFS and was required for regulation of growth, conidiation and various stress responses. Our results were the first to elucidate the lncRNA profiles during infection and development of this important phytopathogen U. virens. The functional discovery of the novel lncRNA, UvlncNAT-MFS, revealed the potential of lncRNAs in regulation of life processes in fungi.


Asunto(s)
Fenómenos Biológicos , Oryza , ARN Largo no Codificante , Perfilación de la Expresión Génica , Hypocreales , Oryza/genética , ARN Largo no Codificante/genética , Transcriptoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA