Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 13192, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37580360

RESUMEN

Nature offers many examples of materials which exhibit exceptional properties due to hierarchical assembly of their constituents. In well-studied multi-cellular systems, such as the morpho butterfly, a visible indication of having ordered submicron features is given by the display of structural color. Detailed investigations of nature's designs have yielded mechanistic insights and led to the development of biomimetic materials at laboratory scales. However, the manufacturing of hierarchical assemblies at industrial scales remains difficult. Biomanufacturing aims to leverage the autonomy of biological systems to produce materials at lower cost and with fewer carbon emissions. Earlier reports documented that some bacteria, particularly those with gliding motility, self-assemble into biofilms with polycrystalline structures and exhibit glittery, iridescent colors. The current study demonstrates the potential of using one of these bacteria, Cellulophaga lytica, as a platform for the large scale biomanufacturing of ordered materials. Specific approaches for controlling C. lytica biofilm optical, spatial and temporal properties are reported. Complementary microscopy-based studies reveal that biofilm color variations are attributed to changes in morphology induced by cellular responses to the local environment. Incorporation of C. lytica biofilms into materials is also demonstrated, thereby facilitating their handling and downstream processing, as would be needed during manufacturing processes. Finally, the utility of C. lytica as a self-printing, photonic ink is established by this study. In summary, autonomous surface assembly of C. lytica under ambient conditions and across multiple length scales circumvent challenges that currently hinder production of ordered materials in industrial settings.


Asunto(s)
Flavobacteriaceae , Flavobacteriaceae/química , Biopelículas , Fotones , Iridiscencia
2.
Small ; 13(38)2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28809455

RESUMEN

Photosynthetic organisms rely on a series of self-assembled nanostructures with tuned electronic energy levels in order to transport energy from where it is collected by photon absorption, to reaction centers where the energy is used to drive chemical reactions. In the photosynthetic bacteria Chlorobaculum tepidum, a member of the green sulfur bacteria family, light is absorbed by large antenna complexes called chlorosomes to create an exciton. The exciton is transferred to a protein baseplate attached to the chlorosome, before migrating through the Fenna-Matthews-Olson complex to the reaction center. Here, it is shown that by placing living Chlorobaculum tepidum bacteria within a photonic microcavity, the strong exciton-photon coupling regime between a confined cavity mode and exciton states of the chlorosome can be accessed, whereby a coherent exchange of energy between the bacteria and cavity mode results in the formation of polariton states. The polaritons have energy distinct from that of the exciton which can be tuned by modifying the energy of the optical modes of the microcavity. It is believed that this is the first demonstration of the modification of energy levels within living biological systems using a photonic structure.


Asunto(s)
Bacterias/metabolismo , Nanopartículas/química , Fotones , Fotosíntesis , Bacterias/ultraestructura , Imagen Óptica , Termodinámica
3.
Microorganisms ; 5(1)2017 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-28230808

RESUMEN

Rhodoferax antarcticus is an Antarctic purple nonsulfur bacterium and the only characterized anoxygenic phototroph that grows best below 20 °C. We present here a high-quality draft genome of Rfx. antarcticus strain ANT.BRT, isolated from an Antarctic microbial mat. The circular chromosome (3.8 Mbp) of Rfx. antarcticus has a 59.1% guanine + cytosine (GC) content and contains 4036 open reading frames. In addition, the bacterium contains a sizable plasmid (198.6 kbp, 48.4% GC with 226 open reading frames) that comprises about 5% of the total genetic content. Surprisingly, genes encoding light-harvesting complexes 1 and 3 (LH1 and LH3), but not light-harvesting complex 2 (LH2), were identified in the photosynthesis gene cluster of the Rfx. antarcticus genome, a feature that is unique among purple phototrophs. Consistent with physiological studies that showed a strong capacity for nitrogen fixation in Rfx. antarcticus, a nitrogen fixation gene cluster encoding a molybdenum-type nitrogenase was present, but no alternative nitrogenases were identified despite the cold-active phenotype of this phototroph. Genes encoding two forms of ribulose 1,5-bisphosphate carboxylase/oxygenase were present in the Rfx. antarcticus genome, a feature that likely provides autotrophic flexibility under varying environmental conditions. Lastly, genes for assembly of both type IV pili and flagella are present, with the latter showing an unusual degree of clustering. This report represents the first genomic analysis of a psychrophilic anoxygenic phototroph and provides a glimpse of the genetic basis for maintaining a phototrophic lifestyle in a permanently cold, yet highly variable, environment.

5.
J Phys Chem Lett ; 6(14): 2702-7, 2015 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-26266851

RESUMEN

In the photosynthetic green sulfur bacterium Chlorobaculum tepidum, the baseplate mediates excitation energy transfer from the light-harvesting chlorosome to the Fenna-Matthews-Olson (FMO) complex and subsequently toward the reaction center (RC). Literature data suggest that the baseplate is a 2D lattice of BChl a-CsmA dimers. However, recently, it has been proposed, using 2D electronic spectroscopy (2DES) at 77 K, that at least four excitonically coupled BChl a are in close contact within the baseplate structure [ Dostál , J. ; et al., J. Phys. Chem. Lett. 2014 , 5 , 1743 ]. This finding is tested via hole burning (HB) spectroscopy (5 K). Our results indicate that the four excitonic states identified by 2DES likely correspond to contamination of the baseplate with the FMO antenna and possibly the RC. In contrast, HB reveals a different excitonic structure of the baseplate chromophores, where excitation is transferred to a localized trap state near 818 nm via exciton hopping, which leads to emission near 826 nm.


Asunto(s)
Proteínas Bacterianas/química , Chlorobi/química , Complejos de Proteína Captadores de Luz/química , Chlorobi/citología , Transferencia de Energía , Conformación Proteica , Análisis Espectral
7.
PLoS One ; 10(2): e0117768, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25658318

RESUMEN

Roseobacter denitrificans is a member of the widespread marine Roseobacter genus. We report the first characterization of a truncated hemoglobin from R. denitrificans (Rd. trHb) that was purified in the heme-bound form from heterologous expression of the protein in Escherichia coli. Rd. trHb exhibits predominantly alpha-helical secondary structure and absorbs light at 412, 538 and 572 nm. The phylogenetic classification suggests that Rd. trHb falls into group II trHbs, whereas sequence alignments indicate that it shares certain important heme pocket residues with group I trHbs in addition to those of group II trHbs. The resonance Raman spectra indicate that the isolated Rd. trHb contains a ferric heme that is mostly 6-coordinate low-spin and that the heme of the ferrous form displays a mixture of 5- and 6-coordinate states. Two Fe-His stretching modes were detected, notably one at 248 cm-1, which has been reported in peroxidases and some flavohemoglobins that contain an Fe-His-Asp (or Glu) catalytic triad, but was never reported before in a trHb. We show that Rd. trHb exhibits a significant peroxidase activity with a (kcat/Km) value three orders of magnitude higher than that of bovine Hb and only one order lower than that of horseradish peroxidase. This enzymatic activity is pH-dependent with a pKa value ~6.8. Homology modeling suggests that residues known to be important for interactions with heme-bound ligands in group II trHbs from Mycobacterium tuberculosis and Bacillus subtilis are pointing toward to heme in Rd. trHb. Genomic organization and gene expression profiles imply possible functions for detoxification of reactive oxygen and nitrogen species in vivo. Altogether, Rd. trHb exhibits some distinctive features and appears equipped to help the bacterium to cope with reactive oxygen/nitrogen species and/or to operate redox biochemistry.


Asunto(s)
Estrés Oxidativo/fisiología , Peroxidasa/metabolismo , Roseobacter/metabolismo , Hemoglobinas Truncadas/metabolismo , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Modelos Moleculares , Oxidación-Reducción , Conformación Proteica
8.
Nat Commun ; 5: 5561, 2014 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-25429787

RESUMEN

Strong exciton-photon coupling is the result of a reversible exchange of energy between an excited state and a confined optical field. This results in the formation of polariton states that have energies different from the exciton and photon. We demonstrate strong exciton-photon coupling between light-harvesting complexes and a confined optical mode within a metallic optical microcavity. The energetic anti-crossing between the exciton and photon dispersions characteristic of strong coupling is observed in reflectivity and transmission with a Rabi splitting energy on the order of 150 meV, which corresponds to about 1,000 chlorosomes coherently coupled to the cavity mode. We believe that the strong coupling regime presents an opportunity to modify the energy transfer pathways within photosynthetic organisms without modification of the molecular structure.


Asunto(s)
Proteínas Bacterianas/metabolismo , Chlorobi/metabolismo , Proteínas Hierro-Azufre/metabolismo , Luz , Orgánulos/metabolismo , Fotones , Fotosíntesis/fisiología , Transferencia de Energía
9.
Biochemistry ; 53(34): 5515-25, 2014 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-25141176

RESUMEN

Green sulfur bacteria, which live in extremely low-light environments, use chlorosomes to harvest light. A chlorosome is the most efficient, and arguably the simplest, light-harvesting antenna complex, which contains hundreds of thousands of densely packed bacteriochlorophylls (BChls). To harvest light efficiently, BChls in a chlorosome form supramolecular aggregates; thus, it is of great interest to determine the organization of the BChls in a chlorosome. In this study, we conducted a (13)C solid-state nuclear magnetic resonance and Mg K-edge X-ray absorption analysis of chlorosomes from wild-type Chlorobaculum tepidum. The X-ray absorption results indicated that the coordination number of the Mg in the chlorosome must be >4, providing evidence that electrostatic interactions formed between the Mg of a BChl and the carbonyl group or the hydroxyl group of the neighboring BChl molecule. According to the intermolecular distance constraints obtained on the basis of (13)C homonuclear dipolar correlation spectroscopy, we determined that the molecular assembly of BChls is dimer-based and that the hydrogen bonds among the BChls are less extensive than commonly presumed because of the twist in the orientation of the BChl dimers. This paper also reports the first (13)C homonuclear correlation spectrum acquired for carotenoids and lipids-which are minor, but crucial, components of chlorosomes-extracted from wild-type Cba. tepidum.


Asunto(s)
Proteínas Bacterianas/química , Bacterioclorofilas/química , Espectroscopía de Resonancia Magnética con Carbono-13 , Carotenoides/química , Lípidos/química , Conformación Proteica , Espectroscopía de Protones por Resonancia Magnética
10.
Photosynth Res ; 122(1): 69-86, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24880610

RESUMEN

A chlorosome is an antenna complex located on the cytoplasmic side of the inner membrane in green photosynthetic bacteria that contains tens of thousands of self-assembled bacteriochlorophylls (BChls). Green bacteria are known to incorporate various esterifying alcohols at the C-17 propionate position of BChls in the chlorosome. The effect of these functional substitutions on the biogenesis of the chlorosome has not yet been fully explored. In this report, we address this question by investigating various esterified bacteriochlorophyll c (BChl c) homologs in the thermophilic green non-sulfur bacterium Chloroflexus aurantiacus. Cultures were supplemented with exogenous long-chain alcohols at 52 °C (an optimal growth temperature) and 44 °C (a suboptimal growth temperature), and the morphology, optical properties and exciton transfer characteristics of chlorosomes were investigated. Our studies indicate that at 44 °C Cfl. aurantiacus synthesizes more carotenoids, incorporates more BChl c homologs with unsaturated and rigid polyisoprenoid esterifying alcohols and produces more heterogeneous BChl c homologs in chlorosomes. Substitution of phytol for stearyl alcohol of BChl c maintains similar morphology of the intact chlorosome and enhances energy transfer from the chlorosome to the membrane-bound photosynthetic apparatus. Different morphologies of the intact chlorosome versus in vitro BChl aggregates are suggested by small-angle neutron scattering. Additionally, phytol cultures and 44 °C cultures exhibit slow assembly of the chlorosome. These results suggest that the esterifying alcohol of BChl c contributes to long-range organization of BChls, and that interactions between BChls with other components are important to the assembly of the chlorosome. Possible mechanisms for how esterifying alcohols affect the biogenesis of the chlorosome are discussed.


Asunto(s)
Proteínas Bacterianas/química , Bacterioclorofilas/química , Chloroflexus/química , Orgánulos/metabolismo , Ficobiliproteínas/química , Alcoholes/metabolismo , Proteínas Bacterianas/metabolismo , Bacterioclorofilas/metabolismo , Carotenoides/metabolismo , Chloroflexus/fisiología , Cromatografía Liquida , Transferencia de Energía , Esterificación , Orgánulos/química , Ficobiliproteínas/metabolismo , Espectrometría de Masas en Tándem , Temperatura
11.
Sci Rep ; 4: 5057, 2014 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-24862580

RESUMEN

Living organisms have to adjust to their surrounding in order to survive in stressful conditions. We study this mechanism in one of most primitive creatures - photosynthetic green sulfur bacteria. These bacteria absorb photons very efficiently using the chlorosome antenna complexes and perform photosynthesis in extreme low-light environments. How the chlorosomes in green sulfur bacteria are acclimated to the stressful light conditions, for instance, if the spectrum of light is not optimal for absorption, is unknown. Studying Chlorobaculum tepidum cultures with far-red to near-infrared light-emitting diodes, we found that these bacteria react to changes in energy flow by regulating the amount of light-absorbing pigments and the size of the chlorosomes. Surprisingly, our results indicate that the bacteria can survive in near-infrared lights capturing low-frequency photons by the intermediate units of the light-harvesting complex. The latter strategy may be used by the species recently found near hydrothermal vents in the Pacific Ocean.


Asunto(s)
Bacterioclorofilas/metabolismo , Chlorobi/crecimiento & desarrollo , Dinámica Poblacional , Aclimatación , Bacterioclorofilas/genética , Chlorobi/genética , Luz , Complejos de Proteína Captadores de Luz/genética , Orgánulos/genética , Orgánulos/metabolismo , Océano Pacífico , Fotosíntesis/genética
12.
Biophys J ; 105(6): 1346-56, 2013 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-24047985

RESUMEN

Green photosynthetic bacteria adjust the structure and functionality of the chlorosome-the light-absorbing antenna complex-in response to environmental stress factors. The chlorosome is a natural self-assembled aggregate of bacteriochlorophyll (BChl) molecules. In this study, we report the regulation of the biogenesis of the Chlorobaculum tepidum chlorosome by carbon assimilation in conjunction with temperature changes. Our studies indicate that the carbon source and thermal stress culture of C. tepidum grows slower and incorporates fewer BChl c in the chlorosome. Compared with the chlorosome from other cultural conditions we investigated, the chlorosome from the carbon source and thermal stress culture displays (a) smaller cross-sectional radius and overall size, (b) simplified BChl c homologs with smaller side chains, (c) blue-shifted Qy absorption maxima, and (d) a sigmoid-shaped circular dichroism spectra. Using a theoretical model, we analyze how the observed spectral modifications can be associated with structural changes of BChl aggregates inside the chlorosome. Our report suggests a mechanism of metabolic regulation for chlorosome biogenesis.


Asunto(s)
Proteínas Bacterianas/biosíntesis , Carbono/metabolismo , Chlorobi/metabolismo , Temperatura , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Bacterioclorofilas/metabolismo , Modelos Moleculares , Fenómenos Ópticos
13.
Photosynth Res ; 115(1): 23-41, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23435510

RESUMEN

Chlorobaculum [Cba.] tepidum is known to grow optimally at 48-52 °C and can also be cultured at ambient temperatures. In this paper, we prepared constant temperature, temperature shift, and temperature shift followed by backshift cultures and investigated the intrinsic properties and spectral features of chlorosomes from those cultures using various approaches, including temperature-dependent measurements on circular dichroism (CD), UV-visible, and dynamic light scattering. Our studies indicate that (1) chlorosomes from constant temperature cultures at 50 and 30 °C exhibited more resistance to heat relative to temperature shift cultures; (2) as temperature increases bacteriochlorophyll c (BChl c) in chlorosomes is prone to demetalation, which forms bacteriopheophytin c, and degradation under aerobic conditions. Some BChl c aggregates inside reduced chlorosomes prepared in low-oxygen environments can reform after heat treatments; (3) temperature shift cultures synthesize and incorporate more BChl c homologs with a smaller substituent at C-8 on the chlorin ring and less BChl c homologs with a larger long-chain alcohol at C-17(3) versus constant-temperature cultures. We hypothesize that the long-chain alcohol at C-17(3) (and perhaps together with the substituent at C-8) may account for thermal stability of chlorosomes and the substituent at C-8 may assist self-assembling BChls; and (4) while almost identical absorption spectra are detected, chlorosomes from different growth conditions exhibited differences in the rotational length of the CD signal, and aerobic and reduced chlorosomes also display different Qy CD intensities. Further, chlorosomes exhibited changes of CD features in response to temperature increases. Additionally, we compare temperature-dependent studies for the Cba. tepidum chlorosomes and previous studies for the Chloroflexus aurantiacus chlorosomes. Together, our work provides useful and novel insights on the properties and organization of chlorosomes.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bacterioclorofilas/metabolismo , Chlorobi/fisiología , Orgánulos/fisiología , Oxígeno/farmacología , Proteínas Bacterianas/química , Bacterioclorofilas/química , Chlorobi/química , Chlorobi/efectos de los fármacos , Chlorobi/efectos de la radiación , Transferencia de Energía , Calor , Rayos Ultravioleta
14.
J R Soc Interface ; 9(76): 2767-80, 2012 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-22896564

RESUMEN

After feeding microbes with a defined (13)C substrate, unique isotopic patterns (isotopic fingerprints) can be formed in their metabolic products. Such labelling information not only can provide novel insights into functional pathways but also can determine absolute carbon fluxes through the metabolic network via metabolic modelling approaches. This technique has been used for finding pathways that may have been mis-annotated in the past, elucidating new enzyme functions, and investigating cell metabolisms in microbial communities. In this review paper, we summarize the applications of (13)C approaches to analyse novel cell metabolisms for the past 3 years. The isotopic fingerprints (defined as unique isotopomers useful for pathway identifications) have revealed the operations of the Entner-Doudoroff pathway, the reverse tricarboxylic acid cycle, new enzymes for biosynthesis of central metabolites, diverse respiration routes in phototrophic metabolism, co-metabolism of carbon nutrients and novel CO(2) fixation pathways. This review also discusses new isotopic methods to map carbon fluxes in global metabolisms, as well as potential factors influencing the metabolic flux quantification (e.g. metabolite channelling, the isotopic purity of (13)C substrates and the isotopic effect). Although (13)C labelling is not applicable to all biological systems (e.g. microbial communities), recent studies have shown that this method has a significant value in functional characterization of poorly understood micro-organisms, including species relevant for biotechnology and human health.


Asunto(s)
Isótopos de Carbono/análisis , Microbiología Ambiental , Marcaje Isotópico/métodos , Redes y Vías Metabólicas/fisiología , Biota , Isótopos de Carbono/administración & dosificación , Marcaje Isotópico/tendencias , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...