Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.098
Filtrar
1.
Front Mol Neurosci ; 17: 1359294, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38706874

RESUMEN

Parkinson's disease (PD), ranking as the second most prevalent neurodegenerative disorder globally, presents a pressing need for innovative animal models to deepen our understanding of its pathophysiology and explore potential therapeutic interventions. The development of such animal models plays a pivotal role in unraveling the complexities of PD and investigating promising treatment avenues. In this study, we employed transcriptome sequencing on BmN cells treated with 1 µg/ml rotenone, aiming to elucidate the underlying toxicological mechanisms. The investigation brought to light a significant reduction in mitochondrial membrane potential induced by rotenone, subsequently triggering mitophagy. Notably, the PTEN induced putative kinase 1 (PINK1)/Parkin pathway emerged as a key player in the cascade leading to rotenone-induced mitophagy. Furthermore, our exploration extended to silkworms exposed to 50 µg/ml rotenone, revealing distinctive motor dysfunction as well as inhibition of Tyrosine hydroxylase (TH) gene expression. These observed effects not only contribute valuable insights into the impact and intricate mechanisms of rotenone exposure on mitophagy but also provide robust scientific evidence supporting the utilization of rotenone in establishing a PD model in the silkworm. This comprehensive investigation not only enriches our understanding of the toxicological pathways triggered by rotenone but also highlights the potential of silkworms as a valuable model organism for PD research.

2.
J Affect Disord ; 358: 105-112, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38703902

RESUMEN

BACKGROUND: The association between magnesium status and sleep quality is unclear. The aim of this study was to determine the relationship between renal reabsorption-related magnesium depletion score (MDS) and sleep quality. METHODS: This study was conducted through a cross-sectional survey of adults aged ≥20 years who participated in NHANES 2005-2014. We used weighted logistic regression to examine the association between MDS and sleep quality and performed trend tests to analyze for the presence of a dose-response relationship. Subgroup analyses were performed based on various sleep outcomes and covariates. RESULTS: A total of 20,585 participants were included in the study, with a mean age of 48.8 years and 50.7 % female. After adjusting for all covariates, we found a graded dose-response relationship between MDS and sleep trouble as well as sleep disorder. Further analyses revealed a significant positive association between MDS and sleep apnea (OR = 3.01; 95 % CI 1.37-6.62), but no association with restless legs, insomnia or insufficient sleep. In addition, subgroup analyses revealed that middle-aged, male, obese, low magnesium intake, and depressed patients were more prone to sleep trouble and sleep disorder; interestingly, MDS was positively associated with excessive sleep in subjects ≥60 years and without depression. CONCLUSIONS: Our study found a significant association between MDS and sleep quality, particularly sleep apnea, but adequate magnesium intake may be beneficial in mitigating this association. MDS may be associated with excessive sleep in older adults, but not with insufficient sleep or insomnia.

3.
Front Neurol ; 15: 1337230, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38694770

RESUMEN

Introduction: Upper limb rehabilitation assessment plays a pivotal role in the recovery process of stroke patients. The current clinical assessment tools often rely on subjective judgments of healthcare professionals. Some existing research studies have utilized physiological signals for quantitative assessments. However, most studies used single index to assess the motor functions of upper limb. The fusion of surface electromyography (sEMG) and functional near-infrared spectroscopy (fNIRS) presents an innovative approach, offering simultaneous insights into the central and peripheral nervous systems. Methods: We concurrently collected sEMG signals and brain hemodynamic signals during bilateral elbow flexion in 15 stroke patients with subacute and chronic stages and 15 healthy control subjects. The sEMG signals were analyzed to obtain muscle synergy based indexes including synergy stability index (SSI), closeness of individual vector (CV) and closeness of time profile (CT). The fNIRS signals were calculated to extract laterality index (LI). Results: The primary findings were that CV, SSI and LI in posterior motor cortex (PMC) and primary motor cortex (M1) on the affected hemisphere of stroke patients were significantly lower than those in the control group (p < 0.05). Moreover, CV, SSI and LI in PMC were also significantly different between affected and unaffected upper limb movements (p < 0.05). Furthermore, a linear regression model was used to predict the value of the Fugl-Meyer score of upper limb (FMul) (R2 = 0.860, p < 0.001). Discussion: This study established a linear regression model using force, CV, and LI features to predict FMul scale values, which suggests that the combination of force, sEMG and fNIRS hold promise as a novel method for assessing stroke rehabilitation.

4.
Foods ; 13(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731714

RESUMEN

This study investigated the bactericidal effects of ultraviolet (UV) radiation, a high-voltage electric field (HVEF), and their combination on Escherichia coli. The results indicated that UV and combined disinfection were more effective with longer exposure, leading to significant reductions in microbial activity. Specifically, the single UV disinfection alone reduced activity by 3.3 log after 5 min, while combined disinfection achieved a 4.2 log reduction. In contrast, short-term HVEF treatment did not exhibit significant bactericidal effects, only achieving a reduction of 0.17 log in 5 min. Furthermore, prolonged exposure to both UV disinfection and an HVEF was found to damage cell membranes, ultimately causing cell death, while shorter durations did not. Despite rapid cell count decreases, flow cytometry did not detect apoptotic or necrotic cells, likely due to rapid cell rupture. This study suggests that combining UV radiation and an HVEF could be a promising approach for inhibiting bacterial reproduction, with HVEF enhancing UV effects. These findings provide insights for using combined HVEF and UV disinfection in food safety and preservation.

5.
BMC Geriatr ; 24(1): 356, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649828

RESUMEN

BACKGROUND: The relationship between triglyceride glucose-body mass index (TyG-BMI) index and mortality in elderly patients with diabetes mellitus (DM) are still unclear. This study aimed to investigate the association between TyG-BMI with all-cause and cardiovascular mortality among elderly DM patients in the United States (US). METHODS: Patients aged over 60 years with DM from the National Health and Nutrition Examination Survey (2007-2016) were included in this study. The study endpoints were all-cause and cardiovascular mortality and the morality data were extracted from the National Death Index (NDI) which records up to December 31, 2019. Multivariate Cox proportional hazards regression model was used to explore the association between TyG-BMI index with mortality. Restricted cubic spline was used to model nonlinear relationships. RESULTS: A total of 1363 elderly diabetic patients were included, and were categorized into four quartiles. The mean age was 70.0 ± 6.8 years, and 48.6% of them were female. Overall, there were 429 all-cause deaths and 123 cardiovascular deaths were recorded during a median follow-up of 77.3 months. Multivariate Cox regression analyses indicated that compared to the 1st quartile (used as the reference), the 3rd quartile demonstrated a significant association with all-cause mortality (model 2: HR = 0.64, 95% CI 0.46-0.89, P = 0.009; model 3: HR = 0.65, 95% CI 0.43-0.96, P = 0.030). Additionally, the 4th quartile was significantly associated with cardiovascular mortality (model 2: HR = 1.83, 95% CI 1.01-3.30, P = 0.047; model 3: HR = 2.45, 95% CI 1.07-5.57, P = 0.033). The restricted cubic spline revealed a U-shaped association between TyG-BMI index with all-cause mortality and a linear association with cardiovascular mortality, after adjustment for possible confounding factors. CONCLUSIONS: A U-shaped association was observed between the TyG-BMI index with all-cause mortality and a linear association was observed between the TyG-BMI index with cardiovascular mortality in elderly patients with DM in the US population.


Asunto(s)
Índice de Masa Corporal , Enfermedades Cardiovasculares , Diabetes Mellitus , Encuestas Nutricionales , Triglicéridos , Humanos , Femenino , Masculino , Anciano , Enfermedades Cardiovasculares/mortalidad , Enfermedades Cardiovasculares/sangre , Encuestas Nutricionales/métodos , Encuestas Nutricionales/tendencias , Estados Unidos/epidemiología , Diabetes Mellitus/sangre , Diabetes Mellitus/mortalidad , Diabetes Mellitus/epidemiología , Triglicéridos/sangre , Glucemia/metabolismo , Glucemia/análisis , Causas de Muerte/tendencias , Persona de Mediana Edad
6.
Front Physiol ; 15: 1345836, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38651047

RESUMEN

Mylabris sibirica is a hypermetamorphic insect whose adults feed on oilseed rape. However, due to a shortage of effective and appropriate endogenous references, studies on molecular functional genes in Mylabris sibirica, have been tremendously limited. In this study, ten internal reference genes (ACT, ARF1, AK, EF1α, GAPDH, α-TUB, RPL6, RPL13, RPS3 and RPS18) were tested and assessed under four selected treatments including adult ages, adult tissues, temperatures, and sex by RT-qPCR based on five methods (Ct value, geNorm, NormFinder, BestKeeper and RefFinder). Our findings showed that RPL6 and RPL13 were the most optimal internal reference gene combination for gene expression during various adult ages and under diverse temperatures; The combination of RPL6 and RPS18 was recommended to test gene transcription levels under different adult tissues. AK and RPL6 were the best reference genes in male and female adults. RPL6 and RPL13 were the most appropriate reference gene pair to estimate gene expression levels under four different tested backgrounds. The relative transcript levels of a uridine diphosphate (UDP)-N-acetylglucosamine-pyrophosphorylase (MsUAP), varied greatly according to normalization with the two most- and least-suited reference genes. This study will lay the basis for further molecular physiology and biochemistry studies in M. sibirica, such as development, reproduction, sex differentiation, cold and heat resistance.

7.
Cell ; 187(9): 2129-2142.e17, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38670071

RESUMEN

Interspecies blastocyst complementation (IBC) provides a unique platform to study development and holds the potential to overcome worldwide organ shortages. Despite recent successes, brain tissue has not been achieved through IBC. Here, we developed an optimized IBC strategy based on C-CRISPR, which facilitated rapid screening of candidate genes and identified that Hesx1 deficiency supported the generation of rat forebrain tissue in mice via IBC. Xenogeneic rat forebrain tissues in adult mice were structurally and functionally intact. Cross-species comparative analyses revealed that rat forebrain tissues developed at the same pace as the mouse host but maintained rat-like transcriptome profiles. The chimeric rate of rat cells gradually decreased as development progressed, suggesting xenogeneic barriers during mid-to-late pre-natal development. Interspecies forebrain complementation opens the door for studying evolutionarily conserved and divergent mechanisms underlying brain development and cognitive function. The C-CRISPR-based IBC strategy holds great potential to broaden the study and application of interspecies organogenesis.


Asunto(s)
Prosencéfalo , Animales , Prosencéfalo/metabolismo , Prosencéfalo/embriología , Ratones , Ratas , Blastocisto/metabolismo , Femenino , Sistemas CRISPR-Cas/genética , Transcriptoma , Organogénesis , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Masculino , Ratones Endogámicos C57BL
8.
Small ; : e2301074, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38659180

RESUMEN

The coating of filter media with silver is typically achieved by chemical deposition and aerosol processes. Whilst useful, such approaches struggle to provide uniform coating and are prone to blockage. To address these issues, an in situ method for coating glass fibers is presented via the dopamine-mediated electroless metallization method, yielding filters with low air resistance and excellent antibacterial performance. It is found that the filtration efficiency of the filters is between 94 and 97% and much higher than that of silver-coated filters produced using conventional dipping methods (85%). Additionally, measured pressure drops ranged between 100 and 150 Pa, which are lower than those associated with dipped filters (171.1 Pa). Survival rates of Escherichia coli and Bacillus subtilis bacteria exposed to the filters decreased to 0 and 15.7%±1.49, respectively after 2 h, with no bacteria surviving after 6 h. In contrast, survival rates of E. coli and B. subtilis bacteria on the uncoated filters are 92.5% and 89.5% after 6 h. Taken together, these results confirm that the in situ deposition of silver onto fiber surfaces effectively reduces pore clogging, yielding low air resistance filters that can be applied for microbial filtration and inhibition in a range of environments.

9.
Cell Discov ; 10(1): 39, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594259

RESUMEN

Glioma, with its heterogeneous microenvironments and genetic subtypes, presents substantial challenges for treatment prediction and development. We integrated 3D bioprinting and multi-algorithm machine learning as a novel approach to enhance the assessment and understanding of glioma treatment responses and microenvironment characteristics. The bioprinted patient-derived glioma tissues successfully recapitulated molecular properties and drug responses of native tumors. We then developed GlioML, a machine learning workflow incorporating nine distinct algorithms and a weighted ensemble model that generated robust gene expression-based predictors, each reflecting the diverse action mechanisms of various compounds and drugs. The ensemble model superseded the performance of all individual algorithms across diverse in vitro systems, including sphere cultures, complex 3D bioprinted multicellular models, and 3D patient-derived tissues. By integrating bioprinting, the evaluative scope of the treatment expanded to T cell-related therapy and anti-angiogenesis targeted therapy. We identified promising compounds and drugs for glioma treatment and revealed distinct immunosuppressive or angiogenic myeloid-infiltrated tumor microenvironments. These insights pave the way for enhanced therapeutic development for glioma and potentially for other cancers, highlighting the broad application potential of this integrative and translational approach.

10.
BMC Cancer ; 24(1): 439, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594655

RESUMEN

BACKGROUND: Renal cell carcinoma (RCC) is a prevalent and extensively immune-infiltrated malignancy of the urinary system. Immune cells play a crucial role in both the progression and therapeutic interventions targeting RCC. Nevertheless, the interplay between RCC and immune cells remains understudied, lacking substantial evidence supporting their causal relationship. METHODS: For the purpose of investigating the causal connection between RCC and immune cell characteristics, a two-way two-sample Mendelian randomization (MR) analysis was carried out in this study. The aim was to determine whether specific immune cell traits have a causal impact on the risk of RCC. In order to achieve this, publicly accessible genetic data was utilized to examine and establish the potential relationship between 731 immune cell characteristics and the likelihood of developing RCC. Additionally, various techniques were applied to verify the reliability, variability, and presence of horizontal pleiotropy in the outcomes. RESULTS: We found a bidirectional causal relationship between RCC and immune cells according to the MR analysis results. It should be noted that CD4-CD8-T cells (OR = 1.61, 95%CI = 1.02-2.55, P = 4.07 × 10-2) pose a risk for RCC, whereas BAFF-R (OR = 0.69, 95%CI = 0.53-0.89, P = 5.74 × 10-3) and CD19 (OR = 0.59, 95%CI = 1.02-2.55, P = 4.07 × 10-2) on B cells act as protective factors. Furthermore, the presence of RCC reduces the levels of B cells (OR = 1.05, 95%CI = 1.01-1.09, P = 1.19 × 10-2) and CD8 + T cells (OR = 1.04, 95%CI = 1.00-1.08, P = 2.83 × 10-2). CONCLUSIONS: Our research illustrates the intricate correlation between immune cells and RCC, presenting novel insights for the prospective safeguarding against RCC risk and the exploration of fresh therapeutic targets.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/genética , Análisis de la Aleatorización Mendeliana , Estudios Prospectivos , Reproducibilidad de los Resultados , Neoplasias Renales/genética , Estudio de Asociación del Genoma Completo
11.
Nano Lett ; 24(15): 4415-4422, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38577835

RESUMEN

The increasing demand for personal protective equipment such as single-use masks has led to large amounts of nondegradable plastic waste, aggravating economic and environmental burdens. This study reports a simple and scalable approach for upcycling waste masks via a chemical vapor deposition technique, realizing a trichome-like biomimetic (TLB) N95 respirator with superhydrophobicity (water contact angle ≥150°), N95-level protection, and reusability. The TLB N95 respirator comprising templated silicone nanofilaments with an average diameter of ∼150 nm offers N95-level protection and breathability comparable to those of commercial N95 respirators. The TLB N95 respirator can still maintain its N95-level protection against particulate matter and viruses after 10 disinfection treatment cycles (i.e., ultraviolet irradiation, microwave irradiation, dry heating, and autoclaving), demonstrating durable reusability. The proposed strategy provides new insight into upcycle waste masks, breaking the existing design and preparation concept of reusable masks.


Asunto(s)
COVID-19 , Dispositivos de Protección Respiratoria , Humanos , Respiradores N95 , Máscaras , SARS-CoV-2
12.
Crit Rev Biotechnol ; : 1-18, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38566484

RESUMEN

Global population growth and demographic restructuring are driving the food and agriculture sectors to provide greater quantities and varieties of food, of which protein resources are particularly important. Traditional animal-source proteins are becoming increasingly difficult to meet the demand of the current consumer market, and the search for alternative protein sources is urgent. Microbial proteins are biomass obtained from nonpathogenic single-celled organisms, such as bacteria, fungi, and microalgae. They contain large amounts of proteins and essential amino acids as well as a variety of other nutritive substances, which are considered to be promising sustainable alternatives to traditional proteins. In this review, typical approaches to microbial protein synthesis processes were highlighted and the characteristics and applications of different types of microbial proteins were described. Bacteria, fungi, and microalgae can be individually or co-cultured to obtain protein-rich biomass using starch-based raw materials, organic wastes, and one-carbon compounds as fermentation substrates. Microbial proteins have been gradually used in practical applications as foods, nutritional supplements, flavor modifiers, and animal feeds. However, further development and application of microbial proteins require more advanced biotechnological support, screening of good strains, and safety considerations. This review contributes to accelerating the practical application of microbial proteins as a promising alternative protein resource and provides a sustainable solution to the food crisis facing the world.

13.
Artículo en Inglés | MEDLINE | ID: mdl-38573292

RESUMEN

BACKGROUND: Long-term success rates of catheter ablation (CA) for long-standing persistent atrial fibrillation (LSPAF) are less than satisfactory. Further improvement of ablation methods is crucial for enhancing the treatment of LSPAF. OBJECTIVE: This study sought to compare the outcomes of concurrent vs staged minimally invasive surgical-catheter hybrid ablation for LSPAF. METHODS: From December 2015 to December 2021, 104 matched patients (concurrent and staged, 1:1) were included in study. In the concurrent group, both left unilateral thoracoscopic epicardial ablation (EA) and CA were performed simultaneously in one procedure. In the staged group, EA was performed at the first hospitalization. If the patients experienced atrial fibrillation (AF) recurrence, CA was performed between 3 months and 1 year after EA. RESULTS: In the concurrent group, 4 patients were restored to sinus rhythm after EA, and 41 were patients restored to sinus rhythm during CA; 86.5% (45 of 52) achieved intraprocedural AF termination during concurrent hybrid ablation. In the staged group, all 52 patients underwent staged CA because of the recurrence of AF or atrial tachycardia (AT). Forty-seven (90.4%) patients achieved intraprocedural AF or AT termination during CA. Freedom from AF or AT off antiarrhythmic drugs at 2 years after hybrid ablation was 79.9% ± 5.7% in the concurrent group and 86.0% ± 4.9% in the staged group (P = 0.390). Failure of intraprocedural AF termination (HR: 14.378) was an independent risk factor for AF recurrence after hybrid ablation. CONCLUSIONS: Both concurrent and staged hybrid ablation could be safely and effectively applied to treat LSPAF. Improving the intraprocedural AF termination rate predicted better outcomes.

14.
J Med Virol ; 96(5): e29634, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38682578

RESUMEN

Metabolic reprogramming induced by Epstein-Barr virus (EBV) often mirrors metabolic changes observed in cancer cells. Accumulating evidence suggests that lytic reactivation is crucial in EBV-associated oncogenesis. The aim of this study was to explore the role of metabolite changes in EBV-associated malignancies and viral life cycle control. We first revealed that EBV (LMP1) accelerates the secretion of the oncometabolite D-2HG, and serum D-2HG level is a potential diagnostic biomarker for NPC. EBV (LMP1)-driven metabolite changes disrupts the homeostasis of global DNA methylation and demethylation, which have a significantly inhibitory effect on active DNA demethylation and 5hmC content. We found that loss of 5hmC indicates a poor prognosis for NPC patients, and that 5hmC modification is a restriction factor of EBV reactivation. We confirmed a novel EBV reactivation inhibitor, α-KG, which inhibits the expression of EBV lytic genes with CpG-containing ZREs and the latent-lytic switch by enhancing 5hmC modification. Our results demonstrate a novel mechanism of which metabolite abnormality driven by EBV controls the viral lytic reactivation through epigenetic modification. This study presents a potential strategy for blocking EBV reactivation, and provides potential targets for the diagnosis and therapy of NPC.


Asunto(s)
Metilación de ADN , Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 4 , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Activación Viral , Humanos , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/fisiología , Carcinoma Nasofaríngeo/virología , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patología , Neoplasias Nasofaríngeas/virología , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patología , Infecciones por Virus de Epstein-Barr/virología , Infecciones por Virus de Epstein-Barr/complicaciones , Proteínas de la Matriz Viral/metabolismo , Proteínas de la Matriz Viral/genética , Epigénesis Genética , Progresión de la Enfermedad
15.
Environ Int ; 187: 108690, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38685157

RESUMEN

Bisphenol F (BPF), a substitute for bisphenol A (BPA), is ubiquitous existed in various environmental media. Exposure to BPF may promote non-alcoholic fatty liver disease (NAFLD), while the potential mechanism is still unknown. In current study, we used in vitro and in vivo model to evaluate its hepatotoxicity and molecular mechanism. Using multi-omics approach, we found that BPF exposure led to changes in hepatic transcriptome, metabolome and chromatin accessible regions that were enriched for binding sites of transcription factors in bZIP family. These alterations were enriched with pathways integral to the endoplasmic reticulum stress and NAFLD. These findings suggested that BPF exposure might reprogram the chromatin accessibility and enhancer landscape in the liver, with downstream effects on genes associated with endoplasmic reticulum stress and lipid metabolism, which relied on bZIP family transcription factors. Overall, our study describes comprehensive molecular alterations in hepatocytes after BPF exposure and provides new insights into the understanding of the hepatoxicity of BPF.

16.
J Invertebr Pathol ; 204: 108104, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38608751

RESUMEN

The silkworm, Bombyx mori, stands out as one of the few economically valuable insects within the realm of model organisms. However, Bombyx mori nucleopolyhedrovirus (BmNPV) poses a significant threat, decreasing the quality and quantity of silkworm cocoons. Over the past few decades, a multitude of researchers has delved into the mechanisms that underlie silkworm resistance to BmNPV, employing diverse methodologies and approaching the problem from various angles. Despite this extensive research, the role of alternative splicing (AS) in the silkworm's response to BmNPV infection has been largely unexplored. This study leveraged both third-generation (Oxford Nanopore Technologies) and second-generation (Illumina) high-throughput sequencing technologies to meticulously identify and analyze AS patterns in the context of BmNPV response, utilizing two distinct silkworm strains-the susceptible strain 306 and the resistant strain NB. Consequently, we identified five crucial genes (Dsclp, LOC692903, LOC101743583, LOC101742498, LOC101743809) that are linked to the response to BmNPV infection through AS and differential expression. Additionally, a thorough comparative analysis was conducted on their diverse transcriptomic expression profiles, including alternative polyadenylation, simple sequence repeats, and transcription factors.

17.
Am J Cancer Res ; 14(3): 1402-1418, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38590397

RESUMEN

The role of vesicular genes in the development of colorectal cancer (CRC) is crucial. Analyzing alterations in these genes at multi-omics can aid in understanding the molecular pathways behind colorectal carcinogenesis and identifying potential treatment targets. However, studies on the overall alteration of vesicular genes in CRC are still lacking. In this study, we aimed to investigate the relationship between vesicle genetic alterations and CRC progression. To achieve this, we analyzed molecular alterations in CRC vesicle genes at eight levels, including mRNA, protein, and epigenetic levels. Additionally, we examined CRC overall survival-related genes that were obtained from a public database. Our analysis of chromatin structural variants, DNA methylation, chromatin accessibility, and proteins (including phosphorylation, ubiquitination, and malonylation), along with RNA-seq data from the TCGA database, revealed multiple levels of alterations in CRC vesicle genes in the collected tissue samples. We progressively examined the alterations of vesicle genes in mRNA and protein levels in CRC and discovered the hub genes. Further investigation identified the probable essential transcription factors. This study contributes to a thorough knowledge of the connection between vesicle gene alterations at multiple levels and the development of CRC and offers a theoretical framework for the identification of novel treatment targets.

18.
Adv Mater ; : e2311129, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38557985

RESUMEN

Air pollution threats to human health have increased awareness of the role of filter units in air cleaning applications. As an ideal energy-saving strategy for air filters, the slip effect on nanofiber surfaces can potentially overcome the trade-off between filtration efficiency and pressure drop. However, the potential of the slip effect in nanofibrous structures is significantly limited by the tight nanofiber stacks. In this study, trichome-like biomimetic (TLB) air filters with 3D-templated silicone nanofilaments (average diameter: ≈74 nm) are prepared based on an in situ chemical vapor deposition (CVD) method inspired by plant purification. Theoretical modeling and experimental results indicate that TLB air filters make significant use of the slip effect to overcome the efficiency-resistance tradeoff. The selectable filter class (up to U15, ≈99.9995%) allows TLB air filters to meet various requirements, and their integral filtration performance surpasses that of most commodity air filters, including melt-blown cloth, ePTFE membranes, electrospun mats, and glass fiber paper. The proposed strategy directly transforms commercial filter media and filters into TLB air filters using a bottom-up, one-step approach. As a proof-of-concept, reusable N95 respirators and air purifiers equipped with TLB air filters are fabricated, overcoming the limitations of existing filter designs and fabrication methods.

19.
J Invertebr Pathol ; 204: 108103, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38583693

RESUMEN

Bombyx mori nucleopolyhedrovirus (BmNPV) caused serious economic losses in sericulture. Analyzing the molecular mechanism of silkworms (B. mori) resistance to BmNPV is of great significance for the prevention and control of silkworm virus diseases and the biological control of agricultural lepidopteran pests. In order to clarify the defense mechanisms of silkworms against BmNPV, we constructed a near isogenic line BC8 with high resistance to BmNPV through the highly BmNPV-resistant strain NB and the highly BmNPV-susceptible strain 306. In this study, RNA-Seq technique was used to analyze the transcriptome level differences in the midgut of BC8 and 306 following BmNPV infection. A total of 1350 DEGs were identified. Clustering analysis showed that these genes could be divided into 8 clusters with different expression patterns. Functional annotations based on GO and KEGG analysis indicated that they were involved in various metabolism pathways. Finally, 32 BmNPV defense responsive genes were screened. They were involved in metabolism, reactive oxygen species (ROS), signal transduction and immune response, and insect hormones. The further verification shows that HSP70 should participate in resistance responses of anti-BmNPV. These findings have paved the way in further functional characterization of candidate genes and subsequently can be used in breeding of BmNPV resistance dominant silkworms.

20.
Virulence ; 15(1): 2339703, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38576396

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has posed enormous challenges to global public health. The use of antibiotics has greatly increased during the SARS-CoV-2 epidemic owing to the presence of bacterial co-infection and secondary bacterial infections. The antibiotics daptomycin (DAP) is widely used in the treatment of infectious diseases caused by gram-positive bacteria owing to its highly efficient antibacterial activity. It is pivotal to study the antibiotics usage options for patients of coronavirus infectious disease (COVID-19) with pneumonia those need admission to receive antibiotics treatment for bacterial co-infection in managing COVID-19 disease. Herein, we have revealed the interactions of DAP with the S protein of SARS-CoV-2 and the variant Omicron (B1.1.529) using the molecular docking approach and Omicron (B1.1.529) pseudovirus (PsV) mimic invasion. Molecular docking analysis shows that DAP has a certain degree of binding ability to the S protein of SARS-CoV-2 and several derived virus variants, and co-incubation of 1-100 µM DAP with cells promotes the entry of the PsV into human angiotensin-converting enzyme 2 (hACE2)-expressing HEK-293T cells (HEK-293T-hACE2), and this effect is related to the concentration of extracellular calcium ions (Ca2+). The PsV invasion rate in the HEK-293T-hACE2 cells concurrently with DAP incubation was 1.7 times of PsV infection alone. In general, our findings demonstrate that DAP promotes the infection of PsV into cells, which provides certain reference of antibiotics selection and usage optimization for clinicians to treat bacterial coinfection or secondary infection during SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Daptomicina , Simulación del Acoplamiento Molecular , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , SARS-CoV-2/efectos de los fármacos , Humanos , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Daptomicina/farmacología , Daptomicina/uso terapéutico , COVID-19/virología , Antibacterianos/farmacología , Unión Proteica , Internalización del Virus/efectos de los fármacos , Betacoronavirus/efectos de los fármacos , Pandemias , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/virología , Células HEK293 , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...