Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Langmuir ; 40(11): 6026-6034, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38451161

RESUMEN

The photocatalytic transformation of carbon dioxide (CO2) into valuable chemicals is a challenging process that requires effective and selective catalysts. However, most polymer-based photocatalysts with electron donor-acceptor (D-A) structures are synthesized with a fixed D-A ratio by using expensive monomers. Herein, we report a simple strategy to prepare polyarene oxides (PAOs) with quinone structural units via oxidation treatment of polyarene (PA). The resultant PAOs show tunable D-A structures and electronic band positions depending on the degree of oxidation, which can catalyze the photoreduction of CO2 with water under visible light irradiation, generating CO as the sole carbonaceous product without H2 generation. Especially, the PAO with an oxygen content of 17.6% afforded the highest CO production rate of 161.9 µmol g-1 h-1. It is verified that the redox transformation between quinone and phenolic hydroxyl in PAOs achieves CO2 photoreduction coupled with water oxidation. This study provides a facile way to access conjugated polymers with a tunable D-A structure and demonstrates that the resultant PAOs are promising photocatalysts for CO2 reduction.

2.
Nat Commun ; 15(1): 160, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167384

RESUMEN

Chemical recycling of plastic wastes is of great significance for sustainable development, which also represents a largely untapped opportunity for the synthesis of value-added chemicals. Herein, we report a novel and general strategy to degrade polyesters via directly breaking the Calkoxy-O bond by nucleophilic substitution of halide anion of ionic liquids under mild conditions. Combined with hydrogenation over Pd/C, 1-butyl-2,3-dimethylimidazolium bromide can realize the deconstruction of various polyesters including aromatic and aliphatic ones, copolyesters and polyester mixtures into corresponding carboxylic acids and alkanes; meanwhile, tetrabutylphosphonium bromide can also achieve direct decomposition of the polyesters with ß-H into carboxylic acids and alkenes under hydrogen- and metal-free conditions. It is found that the hydrogen-bonding interaction between ionic liquid and ester group in polyester enhances the nucleophilicity of halide anion and activates the Calkoxy-O bond. The findings demonstrate how polyester wastes can be a viable feedstock for the production of carboxylic acids and hydrocarbons.

3.
Nat Commun ; 15(1): 712, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38267443

RESUMEN

The chemical transformation of waste polymers into value-added chemicals is of significance for circular economy and sustainable development. Herein, we report upcycling poly(succinates) (PSS) with amines into N-substituted succinimides over succinimide anion-based ionic liquids (ILs, e.g, 1,8-diazabicyclo[5.4.0]undec-7-ene succinimide, [HDBU][Suc]). Assisted with H2O, [HDBU][Suc]) showed the best performance, which could achieve complete transformation of a series of PSS into succinimide derivatives and corresponding diols under mild and metal-free conditions. Mechanism investigation indicates that the cation-anion confined hydrogen-bonding interactions among IL, H2O, ester group, and amino/amide groups, strengthens nucleophilicity of the N atoms in amino/amide groups, and improves electrophilicity of carbonyl C atom in ester group. The attack of the amino/amide N atom on carbonyl C of ester group results in cleavage of carbonyl C-O bond in polyester and formation of amide group. This strategy is also effective for aminolysis of poly(trimethylene glutarate) to glutarimides, and poly(1,4-butylene adipate) to caprolactone diimides.

4.
ChemSusChem ; 16(17): e202300513, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37191041

RESUMEN

Higher amines are important high-valuable chemicals with wide applications, and amination of alcohols is a green route to them, which however generally suffers from harsh reaction conditions and use of equivalent base. Herein, we report an ionic-liquid (IL) hydrogen-bonding promoted dihydrogen autotransfer strategy for amination of alcohols to higher amines over cobalt catalyst under base-free conditions. Co(BF4 )2  ⋅ 6 H2 O complexed with triphos and IL (e. g., tetrabutylphosphonium tetrafluoroborate, [P4444 ][BF4 ]) shows high performances for the reaction and is tolerant of a wide scope of amines and alcohols, affording higher amines in good to excellent yields. Mechanism investigation indicates that the [BF4 ]- anion activates the alcohol via hydrogen bonding, promoting transfer of both hydroxyl H and α-H atoms of alcohol to the cobalt catalyst to form an aldehyde intermediate and cobalt dihydride complex, which are involved in the subsequent reductive amination. This strategy provides a green and effective route for alcohol amination, which may have promising applications in alcohol-involved alkylation reactions.

5.
Sci Adv ; 9(5): eade7971, 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36724269

RESUMEN

Chemical transformation of spent polyesters into value-added chemicals is substantial for sustainable development but still challenging. Here, we report a simple, metal-free, and efficient aminolysis strategy to upcycle polylactic acid by anilines over lactate-based ionic liquids (e.g., tetrabutylammonium lactate), accessing a series of N-aryl lactamides under mild conditions. This strategy is also effective for degradation of poly(bisphenol A carbonate), affording bisphenol A and corresponding diphenylurea derivatives. It is found that, with the assistance of water, lactate anion as hydrogen-bond donor can efficiently activate carbonyl C atom of polyesters via hydrogen bonding with carbonyl O atom; meanwhile, as hydrogen-bond acceptor, it can enhance nucleophilicity of the N atom of anilines via hydrogen bonding with amino H atom. The nucleophilic attack of N atom of anilines on carbonyl C atom of polyesters results in cleavage of C─O bond of polymers and formation of the target products.

6.
J Asian Nat Prod Res ; 17(12): 1213-9, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26654567

RESUMEN

Euphorpekone A (1) and euphorpekone B (2), two new diterpenoids, 3ß-hydroxy-25-methyloxylanosta-8,23-diene, a new triterpenoid (3), together with a known triterpenoid, 3ß,25-dihydroxylanosta-8,23-diene (4), were isolated from Euphorbia pekinensis Rupr. Their structures were elucidated on the basis of UV, IR, 1D ((1)H, (13)C, NOE) and 2D ((1)H-(1)H COSY, HSQC, HMBC) NMR, HR-ESI-MS, X-ray diffraction analysis, and CD method.


Asunto(s)
Antineoplásicos Fitogénicos/aislamiento & purificación , Diterpenos/aislamiento & purificación , Euphorbia/química , Triterpenos/aislamiento & purificación , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Diterpenos/química , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Triterpenos/química , Triterpenos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...