Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem Genet ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864962

RESUMEN

Early metastasis of pancreatic cancer (PaC) is a major cause of its high mortality rate. Previous studies have shown that AHNAK2 is involved in the progression of some tumors and is predicted to be an independent prognostic factor for PaC; however, the specific mechanisms through which AHNAK2 regulates PaC remain unclear. In this study, we examined the role of AHNAK2 in PaC and its potential molecular mechanisms. AHNAK2 mRNA and protein expression in PaC tissues and cells were measured using qRT-PCR and western blot analysis. After AHNAK2 knockdown using small interfering RNA, PaC cells were subjected to CCK-8 scratch, and Transwell assays to assess cell proliferation, migration, and invasion, respectively. Furthermore, the validation of the mechanistic pathway was achieved by western blot analysis. AHNAK2 mRNA and protein levels were up-regulated in PaC and silencing AHNAK2 significantly inhibited the proliferation, migration, and invasion of PaC cells. Mechanistically, AHNAK2 knockdown decreased the expression of phosphorylated p65, phosphorylated IκBα, and matrix metalloproteinase-9 (MMP-9), suggesting that activation of the NF-κB/MMP-9 signaling pathway was inhibited. Importantly, activation of NF-κB reversed the effects of AHNAK2 knockdown. Our findings indicate that AHNAK2 promotes PaC progression through the NF-kB/MMP-9 pathway and provides a theoretical basis for targeting AHNAK2 for the treatment of PaC.

2.
J Gastrointest Oncol ; 13(2): 559-568, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35557584

RESUMEN

Background: Gastric cancer is one of the most lethal cancers. Aberrant expression levels of genes are frequently associated with cell immortalization and the occurrence of tumors. In this study, we aimed to investigate the role of tankyrase 1 (TANK1) in gastric adenocarcinoma and clarify the underlying mechanism. Methods: The messenger RNA (mRNA) levels of TANK1, human telomerase reverse transcriptase (h-TERT), and telomeric repeat binding factor 1 (TRF1) in clinical specimens and SGC-7901 cells were measured via real-time quantitative polymerase chain reaction (RT-qPCR). Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and immunohistochemistry (IHC) assays were utilized to observe the cell apoptosis as well as Ki67 and h-TERT expression in tumor-bearing models. The effects of TANK1 antisense oligonucleotides (TANK1 ASODN) on viability and apoptosis of SGC 7901 cells were evaluated by cell counting kit-8 and flow cytometry analysis. Results: We found that TANK1 and h-TERT were both increased in gastric adenocarcinoma, while TRF1 was decreased. Tumor-bearing models demonstrated that TANK1 ASODN appeared to be effective in inhibiting tumor growth and decreasing the expression of h-TERT. Additionally, TANK1 ASODN inhibited the viability and promoted apoptosis of SGC-7901 cells. Moreover, the mRNA levels of h-TERT and TRF1 were modulated by TANK1 ASODN. Conclusions: This study revealed that TANK1 ASODN inhibits the proliferation and induced the apoptosis of gastric adenocarcinoma cells via manipulating the expression levels of h-TERT and TRF1.

3.
World J Gastroenterol ; 22(20): 4868-80, 2016 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-27239113

RESUMEN

AIM: To investigate the influence of phosphatidylinositol-3-kinase protein kinase B (PI3K/AKT)-HIF-1α signaling pathway on glycolysis in esophageal carcinoma cells under hypoxia. METHODS: Esophageal carcinoma cell lines Eca109 and TE13 were cultured under hypoxia environment, and the protein, mRNA and activity levels of hypoxia inducible factor-1 alpha (HIF-1α), glucose transporter 1, hexokinase-II, phosphofructokinase 2 and lactate dehydrogenase-A were determined. Supernatant lactic acid concentrations were also detected. The PI3K/AKT signaling pathway was then inhibited with wortmannin, and the effects of hypoxia on the expression or activities of HIF-1α, associated glycolytic enzymes and lactic acid concentrations were observed. Esophageal carcinoma cells were then transfected with interference plasmid with HIF-1α-targeting siRNA to assess impact of the high expression of HIF-1α on glycolysis. RESULTS: HIF-1α is highly expressed in the esophageal carcinoma cell lines tested, and with decreasing levels of oxygen, the expression of HIF-1α and the associated glycolytic enzymes and the extracellular lactic acid concentration were enhanced in the esophageal carcinoma cell lines Eca109 and TE13. In both normoxia and hypoxic conditions, the level of glycolytic enzymes and the secretion of lactic acid were both reduced by wortmannin. The expression and activities of glycolytic enzymes and the lactic acid concentration in cells were reduced by inhibiting HIF-1α, especially the decreasing level of glycolysis was significant under hypoxic conditions. CONCLUSION: The PI3K/AKT pathway and HIF-1α are both involved in the process of glycolysis in esophageal cancer cells.


Asunto(s)
Androstadienos/farmacología , Carcinoma/enzimología , Neoplasias Esofágicas/enzimología , Glucólisis/efectos de los fármacos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Proteínas Quinasas/farmacología , Carcinoma/genética , Carcinoma/patología , Línea Celular Tumoral , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Regulación Neoplásica de la Expresión Génica , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Ácido Láctico/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Transfección , Hipoxia Tumoral , Microambiente Tumoral , Wortmanina
4.
World J Gastroenterol ; 20(47): 17894-904, 2014 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-25548487

RESUMEN

AIM: To investigate whether hypoxia inducible factor (HIF)-1α modulates vasculogenic mimicry (VM) by upregulating VE-cadherin expression in esophageal squamous cell carcinoma (ESCC). METHODS: Esophageal squamous cancer cell lines Eca109 and TE13 were transfected with plasmids harboring small interfering RNAs targeting HIF-1α or VE-cadherin. The proliferation and invasion of esophageal carcinoma cells were detected by MTT and Transwell migration assays. The formation of tubular networks of cells was analyzed by 3D culture in vitro. BALB/c nude mice were used to observe xenograft tumor formation. The relationship between the expression of HIF-1α and VE-cadherin, ephrinA2 (EphA2) and laminin5γ2 (LN5γ2) was measured by Western blot and real-time polymerase chain reaction. RESULTS: Knockdown of HIF-1α inhibited cell proliferation (32.3% ± 6.1% for Eca109 cells and 38.6% ± 6.8% for TE13 cells, P < 0.05). Both Eca109 and TE13 cells formed typical tubular networks. The number of tubular networks markedly decreased when HIF-1α or VE-cadherin was knocked down. Expression of VE-cadherin, EphA2 and LN5γ2 was dramatically inhibited, but the expression of matrix metalloproteinase 2 had no obvious change in HIF-1α-silenced cells. Knockdown of VE-cadherin significantly decreased expression of both EphA2 and LN5γ2 (P < 0.05), while HIF-1α expression was unchanged. The time for xenograft tumor formation was 6 ± 1.2 d for Eca109 cells and Eca109 cells transfected with HIF-1α Neo control short hairpin RNA (shRNA) vector, and 8.4 ± 2.1 d for Eca109 cells transfected with an shRNA against HIF-1α. Knockdown of HIF-1α inhibited vasculogenic mimicry (VM) and tumorigenicity in vivo. CONCLUSION: HIF-1α may modulate VM in ESCC by regulating VE-cadherin expression, which affects VM formation through EphA2 and LN5γ2.


Asunto(s)
Antígenos CD/metabolismo , Cadherinas/metabolismo , Carcinoma de Células Escamosas/irrigación sanguínea , Carcinoma de Células Escamosas/metabolismo , Neoplasias Esofágicas/irrigación sanguínea , Neoplasias Esofágicas/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Imitación Molecular , Neovascularización Patológica , Animales , Antígenos CD/genética , Apoptosis , Cadherinas/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Laminina/genética , Laminina/metabolismo , Ratones Endogámicos BALB C , Ratones Desnudos , Invasividad Neoplásica , Interferencia de ARN , Receptor EphA2/genética , Receptor EphA2/metabolismo , Transducción de Señal , Factores de Tiempo , Transfección , Carga Tumoral
5.
FEBS Lett ; 587(21): 3471-9, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24025765

RESUMEN

MicroRNAs (miRNA) have played an important role in carcinogenesis. In this study, Agilent miRNA microarray was used to identify differentially expressed miRNAs in esophageal squamous cell carcinoma (ESCC) tissues and miR-195 was downregulated in ESCC compared with normal esophageal tissues. Moreover, Cdc42 was confirmed as target gene of miR-195. Ectopic expression of miR-195 in ESCC cells significantly downregulated Cdc42 by directly binding its 3' untranslated regions, and induced G1 cell cycle arrest, leading to a significant decrease in cell growth, migration, and invasion in vitro. Therefore, our findings demonstrated that miR-195 may act as a tumor suppressor in ESCC by targeting Cdc42.


Asunto(s)
Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Proliferación Celular , Ciclina B/antagonistas & inhibidores , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Invasividad Neoplásica/genética , Regiones no Traducidas 3' , Anciano , Proteína Quinasa CDC2 , Línea Celular Tumoral , Ciclina B/genética , Ciclina B/metabolismo , Quinasas Ciclina-Dependientes , Regulación hacia Abajo , Carcinoma de Células Escamosas de Esófago , Femenino , Humanos , Masculino , Persona de Mediana Edad , Invasividad Neoplásica/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA