Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Sci Food Agric ; 104(4): 2215-2224, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-37938140

RESUMEN

BACKGROUND: Laboratory-scale experiments have shown that treatment with selective lignin-degrading white-rot fungi improves the nutritional value and ruminal degradability of lignocellulosic biomass (LCB). However, the lack of effective field-applicable pasteurization methods has long been recognized as a major obstacle for scaling up the technique for fungal treatment of large quantities of LCB for animal feeding. In this study, wheat straw (an LCB substrate) was subjected to four field-applicable pasteurization methods - hot-water, formaldehyde fumigation, steam, and hydrated lime - and cultured with Pleurotus ostreatus grain spawn for 10, 20, and 30 days under solid-state fermentation. Samples of untreated, pasteurized but non-inoculated and fungus-treated straws were analyzed for chemical composition, aflatoxin B1 (AFB1 ), and in vitro dry matter digestibility (IVDMD), in vitro total gas (IVGP), methane (CH4 ), and volatile fatty acid (VFA) production. RESULTS: During the 30-day fungal treatment, steam and lime pasteurized straws had the greatest loss of lignin, resulting in marked improvements in crude protein (CP), IVDMD, IVGP, and total VFAs. Irrespective of the pasteurization method, the increase in IVDMD during fungal treatment was linearly (R2 = 0.77-0.92) related to lignin-loss in the substrate during fungal treatment. The CH4 production of the fungus-treated straw was not affected by the pasteurization methods. Aflatoxin B1 was within the safe level (<5 µg kg-1 ) in all pasteurized, fungus treated straws. CONCLUSION: Steam and lime were promising field-applicable pasteurization techniques to produce nutritionally improved fungus-treated wheat straw to feed ruminants. Lime pasteurization was more economical and did not require expensive energy inputs. © 2023 Society of Chemical Industry.


Asunto(s)
Compuestos de Calcio , Lignina , Óxidos , Pleurotus , Animales , Lignina/metabolismo , Biomasa , Aflatoxina B1/metabolismo , Vapor , Rumiantes/metabolismo , Pleurotus/metabolismo , Alimentación Animal/análisis , Fermentación
2.
Front Plant Sci ; 14: 1305999, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38078097

RESUMEN

Corn crop grown and ensiled at high temperature have lower water soluble carbohydrates (WSC), epiphytic lactic acid bacteria (LAB) population, lactic acid concentration, fermentation quality and aerobic stability. This study systematically investigated the effects of heterofermentative LAB (hetLAB), homofermentative LAB (homLAB), molasses and their mixture (MIX) on in-silo fermentation characteristics, chemical profiles, Cornell Net Carbohydrate and Protein System (CNCPS) carbohydrate subfractions, in vitro digestibility (DMD), microbial count, and post-ensiling aerobic stability of whole crop corn silage during hot summer (30 to 45°C) condition. Corn hybrids (P30K08 and DK6789) were ensiled at targeted dry matter (DM) of 330 g/kg for 0, 3, 7, 21, and 150 days in 3 L silos, without additive (CCS) or treated with hetLAB (4×106 cfu/g Lactobacillus buchneri), homLAB (1×106 cfu/g of L. plantarum), molasses (3% of fresh forage) or MIX (half of individual doses of homLAB, hetLAB and molasses) additives. The CCS, homLAB, hetLAB, molasses, or MIX treated chopped material of each hybrid were ensiled in 16 replicate silos at a density of 260 kg of DM/m3. Compared to CCS, the additives significantly improved silage nutritional and fermentation quality, DM digestibility (in vitro), count of LAB, DM recovery and aerobic stability, and decreased counts of yeast and mold. Among the inoculants, the homLAB and MIX inoculated silages had greatest improvement in fermentation quality and nutritional value. The homLAB produced corn silage with the highest (P < 0.05) content of lactic acid, and soluble carbohydrates, and lowest contents of acetic acid, NH3-N and pH, demonstrating desirable and restricted in silo fermentation. On the other hand, the hetLAB inoculated silages had the greatest (P < 0.05) value of acetic acids, highlighting greater aerobic stability. Interestingly, the MIX silages followed the hetLAB in acetic acid value and homLAB in lactic acid value. Notably, without additive stable pH was not achieved during 21 days, with application of molasses, hetLAB and the MIX inoculants stable pH was achieved during 7 days, and with homLAB stable pH was achieved during the first 3 days of ensiling. The greatest numbers of viable LAB were recorded in homLAB (8.13 log cfu/g) and MIX (7.89 log cfu/g) inoculated silages, while the lowest for CCS (6.29 log cfu/g). The lowest yeast (1.48 log cfu/g) and mold (0.22 log cfu/g) were recorded for hetLAB inoculated silage. The greatest (P < 0.05) DM recovery was recorded for hetLAB (97.3%) and MIX (96.9%), and the lowest for the control silage (92.9%). All additives significantly improved the aerobic stability of corn silage, and the greatest value of >72 h was recorded for hetLAB and MIX inoculats, and the lowest for CSC (25 h). In conclusion, additives application can improve fermentation quality, nutritional value, DM recovery and aerobic stability of whole crop corn silage under hot summer conditions of the tropics. The MIX inoculant showed potential to improve in-silo fermentation, and aerobic stability at the same time, however, further investigation are required, particularly with respect of dose rate.

3.
Biology (Basel) ; 12(11)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37998035

RESUMEN

Ewes undergo complex metabolic changes during pregnancy. Understanding the specific process of these changes is a necessary prerequisite in ewes for regulating and intervening in order to maintain pregnancies. However, there have been relatively few studies on the specific changes that occur in nutritional metabolism in pregnant ewes during early gestation, especially for some landrace ewes in highly cold areas. Therefore, this study aimed to (1) elucidate the changes in metabolites and microbial communities in pregnant ewes during early gestation using metabolomics and 16S ribosomal RNA gene (rDNA) amplicon sequencing approaches, and to (2) discover novel early pregnancy-induced biomarkers in the blood and faeces. Rams were placed together with ewes on D0 and removed on D45. During early gestation, blood and faecal samples were collected from ewes in a highly cold area for analysing the metabolites and microbial communities; these were retrospectively classified as the early gestation pregnant (EP) ewe group or the nonpregnant (NP) ewe group based on the lambing status recorded during the expected delivery period. The differences in the plasma biochemical parameters, plasma metabolites, and faecal microbial communities of pregnant and nonpregnant ewes were characterised. The GC, IL-6, O-acetyl-l-serine, L-glutamine, and 6-acetamido-2-oxohexanoic acid were screened out as potential biomarkers for evaluating the occurrence of early pregnancy. These novel early pregnancy-induced metabolites discovered in ewes might allow for the development of technologies to detect early pregnancies in sheep in highly cold areas.

4.
Food Sci Nutr ; 11(6): 3575-3587, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37324908

RESUMEN

This experiment explored the effects of different proportions of sweet sorghum silage as a substitute for corn silage on dry matter intake (DMI), milk yield, milk quality, apparent digestibility, rumen fermentation parameters, serum amino acid profile, and rumen microbial composition of dairy cows. A total of 32 mid-lactation Holstein dairy cows with similar body weights and parities were randomly divided into four treatments: 100% corn silage +0% sorghum silage (CON), 75% corn silage +25% sorghum silage (CS1), 50% corn silage +50% sorghum silage (CS2), and 25% corn silage +75% sorghum silage (CS3). The milk yield was increased (linear, p = .048) as the proportion of sweet sorghum increased. Linear (p = .003) and quadratic (p = .046) increased effects were observed in milk fat as corn silage was replaced with sorghum silage. Compared with the CON diet group, the CS2 and CS3 diet groups had lower dry matter (DM) (linear, p < .001), ether extract (EE) (linear, p < .001), and gross energy (GE) (linear, p = .001) digestibility of the dairy cows. The ruminal fluid aspartate (Asp) level decreased (linear, p = .003) as the proportion of sweet sorghum increased. Linear (p < .05) and quadratic (p < .05) increased effects were observed for the contents of threonine (Thr), glycine (Gly), valine (Val), leucine (Leu), tyrosine (Tyr), and histidine (His) in rumen fluid with the replacement of corn silage with sorghum silage. Cows fed the CS3 diet had greater Faecalibacterium, Bacteroides, and Prevotella ruminicola content/copy number than those fed the CON diet (p < .05). In conclusion, feeding sorghum silage as a replacement for corn silage could increase the milk yield and fat, promote the growth of rumen microbes, and provide more rumen fluid amino acids for the body and microbial utilization. We believe that sorghum silage is feasible for dairy cows, and it is reasonable to replace corn silage with 75% sorghum silage.

5.
Front Microbiol ; 14: 1103222, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36950158

RESUMEN

Introduction: Rumen motility is a key element that influences ruminant nutrition, whereas little is known about the effects of rumen contraction duration on rumen fermentation and ruminal microbiome. We previously reported that proper rotation speed of a rumen simulation technique (RUSITEC) system enhanced rumen fermentation and microbial protein (MCP) production. In the present study, different contraction durations and intervals were simulated by setting different stirring times and intervals of the stirrers in a RUSITEC system. The objective of this trial was to evaluate the influences of stirring time on rumen fermentation characteristics, nutrient degradation, and ruminal bacterial microbiota in vitro. Methods: This experiment was performed in a 3 × 3 Latin square design, with each experimental period comprising 4 d for adjustment and 3 d for sample collection. Three stirring time treatments were set: the constant stir (CS), the intermittent stir 1 (each stir for 5 min with an interval of 2 min, IS1), and the intermittent stir 2 (each stir for 4 min with an interval of 3 min, IS2). Results: The total volatile fatty acid (TVFA) concentration, valerate molar proportion, ammonia nitrogen level, MCP density, protozoa count, disappearance rates of dry matter, organic matter, crude protein, neutral detergent fiber, and acid detergent fiber, emissions of total gas and methane, and the richness index Chao 1 for the bacterial community were higher (p < 0.05) in the IS1 when compared to those in the CS. The greatest TVFA, MCP, protozoa count, nutrient disappearance rates, gas productions, and bacterial richness indices of Ace and Chao 1 amongst all treatments were observed in the IS2. The relative abundance of the genus Treponema was enriched (p < 0.05) in CS, while the enrichment (p < 0.05) of Agathobacter ruminis and another two less known bacterial genera were identified in IS2. Discussion: It could be concluded that the proper reduction in the stirring time might help to enhance the feed fermentation, MCP synthesis, gas production, and the relative abundances of specific bacterial taxa.

6.
Front Nutr ; 9: 1066074, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36466399

RESUMEN

This study was conducted to evaluate the influences of supplementing tannic acid (TA) at different doses on the production performance, physiological and immunological characteristics, and rumen bacterial microbiome of cattle. Forty-eight Holstein bulls were randomly allocated to four dietary treatments: the control (CON, basal diet), the low-dose TA treatment [TAL, 0.3% dry matter (DM)], the mid-dose TA treatment (TAM, 0.9% DM), and the high-dose TA treatment (TAH, 2.7% DM). This trial consisted of 7 days for adaptation and 90 days for data and sample collection, and samples of blood and rumen fluid were collected on 37, 67, and 97 d, respectively. The average daily gain was unaffected (P > 0.05), whilst the ruminal NH3-N was significantly decreased (P < 0.01) by TA supplementation. The 0.3% TA addition lowered (P < 0.05) the levels of ruminal isobutyrate, valerate, and tumor necrosis factor alpha (TNF-α), and tended to (P < 0.1) increase the gain to feed ratio. The digestibility of DM, organic matter (OM), and crude protein, and percentages of butyrate, isobutyrate, and valerate were lower (P < 0.05), while the acetate proportion and acetate to propionate ratio in both TAM and TAH were higher (P < 0.05) than the CON. Besides, the 0.9% TA inclusion lessened (P < 0.05) the concentrations of glucagon and TNF-α, but enhanced (P < 0.05) the interferon gamma (IFN-γ) level and Simpson index of ruminal bacteria. The 2.7% TA supplementation reduced (P < 0.05) the intake of DM and OM, and levels of malondialdehyde and thyroxine, while elevated (P < 0.05) the Shannon index of the rumen bacterial populations. Moreover, the relative abundances of the phyla Fibrobacteres and Lentisphaerae, the genera Fibrobacter and Bradyrhizobium, and the species Bradyrhizobium sp., Lachnospiraceae bacterium RM29, and Lachnospiraceae bacterium CG57 were highly significantly (q < 0.01) or significantly (q < 0.05) raised by adding 2.7% TA. Results suggested that the TA addition at 0.3% is more suitable for the cattle, based on the general comparison on the impacts of supplementing TA at different doses on all the measured parameters.

7.
Anim Nutr ; 11: 350-358, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36329682

RESUMEN

The purpose of this study was to investigate the effects of dietary L-theanine supplementation on apparent nutrient digestibility, milk yield, milk composition, and blood biochemical indices of dairy cows under heat stress. Thirty Chinese Holstein cows (19.84 ± 2.42 kg milk/d, 192.36 ± 40.77 d in milk and 2 ± 0.93 parities) were divided into 3 groups of 10 animals each. The control group was fed a basal total mixed ration (TMR) diet, while treatment 1 (LTA16) and treatment 2 (LTA32) groups were fed a basal TMR diet supplemented with L-theanine at 16 and 32 g/cow per day, respectively. The results showed that feeding the dairy cows with LTA16 treatment decreased (P < 0.05) their rectal temperature, whereas feeding with LTA32 treatment decreased (P < 0.05) their rumen fluid ammonia nitrogen content. In comparison to the control group, the supplementation of L-theanine had no significant effect (P > 0.05) on the dry matter intake, nutrient digestibility, total volatile fatty acid (TVFA) concentration and molar proportion of volatile fatty acid, milk yield, milk composition, feed efficiency and antioxidant capacity of the dairy cows. The triglyceride (TG) content of the LTA32 group was significantly greater (P = 0.014) than that of the control group. With the increase in L-theanine dosage, the serum cholesterol (CHOL) content significantly increased (P = 0.013). The serum albumin (ALB; P = 0.067), low-density lipoprotein cholesterol (LDL-C; P = 0.053), and high-density lipoprotein cholesterol (HDL-C; P = 0.067) contents showed an upward trend as L-theanine dosage increased. Ultimately, the results of this study show that supplementing dairy cow diet with L-theanine could decrease dairy cow rectal temperature, affect lipid metabolism, and potentially relieve the heat stress of dairy cows to some extent.

8.
Food Sci Nutr ; 10(11): 3749-3758, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36348789

RESUMEN

Tea tree oil (TTO) is a plant-derived additive with anti-inflammatory, bactericidal, and growth-promoting properties. However, little is known about the effects of TTO on intestinal amino acid transport and immune function in goats. Twenty-four Ganxi goats (initial body weight of 13.5 ± 0.70 kg) were randomly allotted two treatments and fed either control (CON) or CON+TTO (0.2 ml/kg) diet. The addition of TTO to the diet significantly decreased (p < .05) tumor necrosis factor-α content and increased (p < .05) interleukin-2 (IL-2) content in goat serum; significantly decreased (p < .05) IL-12, and increased (p < .05) IL-2 content in goat ileal mucosa; significantly increased (p < .05) secreted IgA content in the jejunal and ileal mucosa; significantly upregulated (p < .05) IL-2 and downregulated (p < .05) IL-12 at the mRNA level in the ileal mucosa; significantly elevated the levels of serine, arginine, and total amino acids in the ileal mucosa (p < .05); significantly upregulated (p < .05) SLC1A1 and SLC7A1 in the ileum; and significantly enhanced (p < .05) the protein expression of Claudin-1 in the ileal mucosa. In summary, adding 0.2 ml/kg of TTO to the diet enhanced SLC1A1 and SLC7A1 mRNA expression in the ileal mucosa, and SLC1A1 and SLC7A1 could transport serine and arginine from the chyme to the ileal mucosa. Thus, increased serine and arginine content in the mucosa could improve intestinal immunity. TTO supplementation upregulated the expression of IL-2 and Claudin-1 in goat ileal mucosa, and enhanced immune function in the intestine.

9.
Front Vet Sci ; 9: 1004841, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36187804

RESUMEN

The present study was performed to evaluate the impacts of tannic acid (TA) supplementation at different levels on the growth performance, physiological, oxidative and immunological metrics, and ruminal microflora of Xiangdong black goats. Twenty-four goats were randomly assigned to four dietary treatments: the control (CON, basal diet), the low-dose TA group [TAL, 0.3 % of dry matter (DM)], the mid-dose TA group (TAM, 0.6 % of DM), and the high-dose TA group (TAH, 0.9 % of DM). Results showed that the growth performance was unaffected (P > 0.05) by adding TA, whilst the 0.3 % and 0.6 % TA supplementation significantly decreased (P < 0.05) the apparent digestibility of crude protein (CP) and ruminal NH3-N concentration, and raised (P < 0.05) the level of total volatile fatty acid (TVFA) in rumen. The increments of alanine aminotransferase (ALT), triglyceride (TG), cortisol (CORT), total antioxidant capacity (T-AOC), interleukin (IL)-1ß, IL-6, and serumamyloid A (SAA), and decrements of globulin (GLB), immunoglobulin G (IgG), cholinesterase (CHE), glutathione reductase (GR), creatinine (CRE), growth hormone (GH), high-density lipoprotein cholesterol (HDLC), and insulin-like growth factor 1 (IGF-1) to different extents by TA addition were observed. Although the Alpha and Beta diversity of rumen bacterial community remained unchanged by supplementing TA, the relative abundance of the predominant genus Prevotella_1 was significantly enriched (P < 0.05) in TAL. It could hence be concluded that the TA supplementation in the present trial generally decreased CP digestion and caused oxidative stress and inflammatory response without influencing growth performance and ruminal microbiota diversity. More research is needed to explore the premium dosage and mechanisms of effects for TA addition in the diet of goats.

10.
Nutrition ; 103-104: 111797, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36150333

RESUMEN

Maintaining muscle quality throughout life is crucial to human health and well-being. Muscle is the most extensive form of protein storage in the human body; skeletal muscle mass is determined by the balance between muscle protein synthesis (MPS) and muscle protein breakdown (MPB). MPB provides amino acids needed by various organs; however, excessive MPB, especially with aging, may cause loss of muscle mass and a decline in motor function, even threatening life. The turnover of muscle protein is vital to the health of humans. Thus, although the study of MPS and MPB has theoretical and practical significance, the network that controls MPS is very complicated and we cannot discuss both MPS and MPB in a single review. Therefore, the aim of this review is to discuss the regulation of MPS, especially by amino acids. Amino acids regulate protein synthesis in cell and animal models, but compelling evidence for amino acids promoting protein synthesis in human muscles is ambiguous. Studies on the stimulation of human MPS by branched-chain amino acids (BCAAs) have been inconsistent. Amino acids other than BCAAs such as threonine and tryptophan may also have MPS-stimulating effects, and alternatives to BCAAs, such as ß-hydroxy-ß-methyl butyrate and branched-chain keto acids are also worthy of further investigation. Amino acids coordinate protein synthesis and degradation through the mechanistic target of rapamycin complex 1 (mTORC1); however, the amino acid-mTORC1-protein synthesis pathway is complex, and new insights into amino acid control continue to emerge. Understanding how amino acids control MPS is of forward-looking significance for treating muscle mass loss during human aging.


Asunto(s)
Aminoácidos , Proteínas Musculares , Animales , Humanos , Proteínas Musculares/metabolismo , Aminoácidos/metabolismo , Músculo Esquelético/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo
11.
Food Sci Nutr ; 10(7): 2400-2407, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35844930

RESUMEN

The study investigated the effect of alfalfa hay substituted with ramie silage on the expression of apoptotic genes in the gastrointestinal tract of goats. Thirty-two goats were randomly allocated into four groups, in which the alfalfa was substituted with ramie at 0%, 35%, 75%, and 100% levels, respectively. In the rumen, the mRNA expression of Bax was significantly up-regulated (p = .0007) when alfalfa was 100% substituted by ramie; the mRNA expression of Bcl-2/Bax was significantly down-regulated (p = .02) when alfalfa was 100% substituted by ramie compared with the 75% substituted treatment; the protein expression of Bcl-xl was significantly down-regulated (p = .03) when alfalfa was 100% substituted by ramie compared with 35% and 75% substituted treatments, respectively. In the jejunum, the mRNA expression of p53 was significantly up-regulated (p = .01) when alfalfa was 100% substituted by ramie compared with 0% and 35% substituted treatments; the protein expression of p53 was significantly up-regulated (p = .001) when alfalfa was 35% substituted by ramie compared with 0% and 75% substituted treatments. However, the activity of Caspase-3 was not affected by different substituting levels of ramie in the rumen and jejunum of goats (p > .05). In conclusion, ramie with high substitution had strong antinutritional effect, which might promote the apoptosis in the gastrointestinal tract of goats in a caspase-independent manner, thus affecting the growth and development of goat. It was suggested that ramie should not replace alfalfa more than 35% in the process of goat feeding.

12.
J Anim Sci Biotechnol ; 13(1): 85, 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35821163

RESUMEN

BACKGROUND: Methionine or lysine has been reported to influence DNA methylation and fat metabolism, but their combined effects in N6-methyl-adenosine (m6A) RNA methylation remain unclarified. The combined effects of rumen-protected methionine and lysine (RML) in a low-protein (LP) diet on lipid metabolism, m6A RNA methylation, and fatty acid (FA) profiles in the liver and muscle of lambs were investigated. Sixty-three male lambs were divided into three treatment groups, three pens per group and seven lambs per pen. The lambs were fed a 14.5% crude protein (CP) diet (adequate protein [NP]), 12.5% CP diet (LP), and a LP diet plus RML (LP + RML) for 60 d. RESULTS: The results showed that the addition of RML in a LP diet tended to lower the concentrations of plasma leptin (P = 0.07), triglyceride (P = 0.05), and non-esterified FA (P = 0.08). Feeding a LP diet increased the enzyme activity or mRNA expression of lipogenic enzymes and decreased lipolytic enzymes compared with the NP diet. This effect was reversed by supplementation of RML with a LP diet. The inclusion of RML in a LP diet affected the polyunsaturated fatty acids (PUFA), n-3 PUFA, and n-6 PUFA in the liver but not in the muscle, which might be linked with altered expression of FA desaturase-1 (FADS1) and acetyl-CoA carboxylase (ACC). A LP diet supplemented with RML increased (P < 0.05) total m6A levels in the liver and muscle and were accompanied by decreased expression of fat mass and obesity-associated protein (FTO) and alkB homologue 5 (ALKBH5). The mRNA expressions of methyltransferase-like 3 (METTL3) and methyltransferase-like 14 (METTL14) in the LP + RML diet group were lower than those in the other two groups. Supplementation of RML with a LP diet affected only liver YTH domain family (YTHDF2) proteins (P < 0.05) and muscle YTHDF3 (P = 0.09), which can be explained by limited m6A-binding proteins that were mediated in mRNA fate. CONCLUSIONS: Our findings showed that the inclusion of RML in a LP diet could alter fat deposition through modulations of lipogenesis and lipolysis in the liver and muscle. These changes in fat metabolism may be associated with the modification of m6A RNA methylation. A systematic graph illustrates the mechanism of dietary methionine and lysine influence on lipid metabolism and M6A. The green arrow with triangular heads indicates as activation and brown-wine arrows with flat heads indicates as suppression.

13.
Animals (Basel) ; 12(12)2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35739870

RESUMEN

The colon is a crucial digestive organ of the hind gut in ruminants. The bacterial diversity and mucosal immune maturation in this region are related to age. However, whether the microRNA expression in the colon of goats is affected by age is still unclear. In the current study, we analyzed the transcriptomes of colon microRNAs during preweaning (Day 10 and Day 25) and postweaning (Day 31). A total of 1572 microRNAs were identified in the colon tissues. Of these, 39 differentially expressed microRNAs (DEmiRNAs) and 88 highly expressed microRNAs (HEmiRNAs) were screened. The target genes regulated by the DEmiRNAs and HEmiRNAs were commonly enriched in the MAPK signaling pathway, Wnt signaling pathway, Hippo signaling pathway, cell adhesion molecules, focal adhesion, and adherens junction. Remarkably, the targeted genes of the DEmiRNAs were highly enriched for the prevention of microbial invasion via the Erbb-MAPK network while the targeted genes of HEmiRNAs contributed to the permeable barrier maintenance and cell damage surveillance. Additionally, there were eight different expression profiles of 87 dynamic miRNAs, in which approximately half of them were affected by age. Taken together, our study reveals the different roles of DEmiRNAs, HEmiRNAs, and dynamic microRNAs in the development of the colon and gives new insights into the regulatory mechanism of colon development in goats.

14.
Front Vet Sci ; 9: 812373, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35647087

RESUMEN

This experiment was performed to reveal the metabolic responses of dairy cows to the replacement of soybean meal (SBM) with fermented soybean meal (FSBM). Twenty-four lactating Chinese Holstein dairy cattle were assigned to either the SBM group [the basal total mixed ration (TMR) diet containing 5.77% SBM] or the FSBM group (the experimental TMR diet containing 5.55% FSBM), in a completely randomized design. The entire period of this trial consisted of 14 days for the adjustment and 40 days for data and sample collection, and sampling for rumen liquid, blood, milk, and urine was conducted on the 34th and 54th day, respectively. When SBM was completely replaced by FSBM, the levels of several medium-chain FA in milk (i.e., C13:0, C14:1, and C16:0) rose significantly (p < 0.05), while the concentrations of a few milk long-chain FA (i.e., C17:0, C18:0, C18:1n9c, and C20:0) declined significantly (p < 0.05). Besides, the densities of urea nitrogen and lactic acid were significantly (p < 0.05) higher, while the glucose concentration was significantly (p < 0.05) lower in the blood of the FSBM-fed cows than in the SBM-fed cows. Based on the metabolomics analysis simultaneously targeting the rumen liquid, plasma, milk, and urine, it was noticed that substituting FSBM for SBM altered the metabolic profiles of all the four biofluids. According to the identified significantly different metabolites, 3 and 2 amino acid-relevant metabolic pathways were identified as the significantly different pathways between the two treatments in the rumen fluid and urine, respectively. Furthermore, glycine, serine, and threonine metabolism, valine, leucine, and isoleucine biosynthesis, and cysteine and methionine metabolism were the three key integrated different pathways identified in this study. Results mainly implied that the FSBM replacement could enhance nitrogen utilization and possibly influence the inflammatory reactions and antioxidative functions of dairy cattle. The differential metabolites and relevant pathways discovered in this experiment could serve as biomarkers for the alterations in protein feed and nitrogen utilization efficiency of dairy cows, and further investigations are needed to elucidate the definite roles and correlations of the differential metabolites and pathways.

15.
Anim Biosci ; 35(6): 847-857, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34991223

RESUMEN

OBJECTIVE: The effects of maternal undernutrition during midgestation on muscle fiber histology, myosin heavy chain (MyHC) expression, methylation modification of myogenic factors, and the mammalian target of rapamycin (mTOR) signaling pathway in the skeletal muscles of prenatal and postnatal goats were examined. METHODS: Twenty-four pregnant goats were assigned to a control (100% of the nutrients requirement, n = 12) or a restricted group (60% of the nutrients requirement, n = 12) between 45 and 100 days of gestation. Descendants were harvested at day 100 of gestation and at day 90 after birth to collect the femoris muscle tissue. RESULTS: Maternal undernutrition increased (p<0.05) the fiber area of the vastus muscle in the fetuses and enhanced (p<0.01) the proportions of MyHCI and MyHCIIA fibers in offspring, while the proportion of MyHCIIX fibers was decreased (p<0.01). DNA methylation at the +530 cytosine-guanine dinucleotide (CpG) site of the myogenic factor 5 (MYF5) promoter in restricted fetuses was increased (p<0.05), but the methylation of the MYF5 gene at the +274,280 CpG site and of the myogenic differentiation (MYOD) gene at the +252 CpG site in restricted kids was reduced (p<0.05). mTOR protein signals were downregulated (p<0.05) in the restricted offspring. CONCLUSION: Maternal undernutrition altered the muscle fiber type in offspring, but its relationship with methylation in the promoter regions of myogenic genes needs to be elucidated.

16.
Br J Nutr ; 127(8): 1121-1131, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-34121640

RESUMEN

This study was designed to investigate the effects of dietary starch structure on muscle protein synthesis and gastrointestinal amino acid (AA) transport and metabolism of goats. Twenty-seven Xiangdong black female goats (average body weight = 9·00 ± 1·12 kg) were randomly assigned to three treatments, i.e., fed a T1 (normal maize 100 %, high amylose maize 0 %), T2 (normal maize 50 %, high amylose maize 50 %) and T3 (normal maize 0 %, high amylose maize 100 %) diet for 35 d. All AA in the ileal mucosa were decreased linearly as amylose:amylopectin increased in diets (P < 0·05). The plasma valine (linear, P = 0·03), leucine (linear, P = 0·04) and total AA content (linear, P = 0·03) increased linearly with the increase in the ratio of amylose in the diet. The relative mRNA levels of solute carrier family 38 member 1 (linear, P = 0·01), solute carrier family 3 member 2 (linear, P = 0·02) and solute carrier family 38 member 9 (linear, P = 0·02) in the ileum increased linearly with the increase in the ratio of amylose in the diet. With the increase in the ratio of amylose:amylopectin in the diet, the mRNA levels of acetyl-CoA dehydrogenase B (linear, P = 0·04), branched-chain amino acid transferase 1 (linear, P = 0·02) and branched-chain α-keto acid dehydrogenase complex B (linear, P = 0·01) in the ileum decreased linearly. Our results revealed that the protein abundances of phosphorylated mammalian target of rapamycin (p-mTOR) (P < 0·001), phosphorylated 4E-binding protein 1 (P < 0·001) and phosphorylated ribosomal protein S6 kinases 1 (P < 0·001) of T2 and T3 were significantly higher than that of T1. In general, a diet with a high amylose ratio could reduce the consumption of AA in the intestine, allowing more AA to enter the blood to maintain higher muscle protein synthesis through the mTOR pathway.


Asunto(s)
Amilopectina , Amilosa , Sistemas de Transporte de Aminoácidos/genética , Aminoácidos de Cadena Ramificada/metabolismo , Amilopectina/farmacología , Amilosa/farmacología , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Femenino , Cabras/metabolismo , Íleon/metabolismo
17.
Front Vet Sci ; 9: 1098651, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36713857

RESUMEN

Introduction: Abrupt weaning is a major stressful event, contributing to intestinal abnormalities and immune system dysfunction in weaned kids. Inulin is a prebiotic fiber with many positive functions, including promoting intestinal fermentation and enhancing host immunity in monogastric animals. However, the effects of a high-inulin, energy-rich diet on ruminal fermentation characteristics, methane emission, growth performance, and immune systems of weaned kids have not been investigated. Methods: A fully automated in vitro fermentation system was used to investigate ruminal fermentation characteristics and methane emission of a mixed substrate of inulin and fat powder (1.31: 1) in comparison with maize grain-based starter concentrate. During a 1-week adaptation and 4-week trial phase, 18 weaned kids (8.97 ± 0.19 kg) were randomly assigned to two groups, one with a conventional diet (83% maize grain; CON) and the other with a low-carbon, high-inulin diet (41.5% maize grain, 14.4% fat powder, 18.9% inulin; INU). Results: In the in vitro rumen fermentation experiment, the total gas production was not different (p > 0.05); however, a lower (p < 0.05) methane production was observed for INU as compared to CON. The average daily gain and the ratio of feed intake and growth performance of kids fed with INU were higher (p < 0.05) than those fed with CON. Serum concentrations of alanine transaminase (ALT) and lactate dehydrogenase (LDH) were lower (p < 0.05), whereas the concentration of high-density lipoprotein (HDL) and cholesterol (CHOL) were higher (p < 0.05) in kids fed with the INU diet as compared CON. Dietary inulin significantly increased (p < 0.05) the secretion of immunoglobulins (IgA, IgG, and IgM) and inflammatory cytokines (IFN-γ and IL-10) in ileum tissue. Although no differences (p > 0.05) were observed in mRNA expression of tight junction markers, the INU diet tended to increase (p = 0.09) gene expression of ribosomal protein S6 kinase beta-1 (P70S6K) in the mammalian target of rapamycin (mTOR) pathway of longissimus dorsi muscle. Conclusion: Our findings highlighted that a low-carbon high-inulin energy-rich diet could be used as a promising strategy to improve gut immunity and growth performance of weaned kids under abrupt weaning stress and reduce methane production.

18.
Anim Nutr ; 7(4): 1253-1257, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34786498

RESUMEN

The present trial was performed to reveal the regulatory effects of L-theanine on the levels of lipopolysaccharide (LPS) endotoxin within different biofluids, as well as relevant inflammatory responses of dairy cattle under heat stress conditions. Thirty lactating Chinese Holstein dairy cattle (189 ± 47 days in milk, and 2 ± 1 parities) were allocated in a completely randomized design to each of 3 dietary treatments: the control (CON, 0 g/d per cow L-theanine), the low L-theanine dosage treatment (LL, 16 g/d per cow L-theanine), and the high L-theanine dosage treatment (HL, 32 g/d per cow L-theanine). This trial consisted of 38 d (7 d for adaption and 31 d for data and sample collection), and sample collection for rumen liquid, blood plasma or serum, and milk were conducted on the d 27 and 38, respectively. Dairy cattle were constantly exposed to environmental heat stress during this experiment according to the recorded temperature-humidity index (THI). In the LL treatment, LPS concentration in rumen liquid was higher (P < 0.05), whilst LPS densities in plasma and milk were lower (P < 0.05) than those of the CON. Supplementing L-theanine at 2 dosages both significantly lowered (P < 0.05) the level of interleukin (IL)-1ß in the serum. Results of the present study suggested that L-theanine could be a promising additive in reducing the detrimental effects of heat stress on dairy cows, and L-theanine supplementation at 16 g/d per cow is preferred because it reduced the LPS translocation into the peripheral blood and LPS accumulation in the milk, as well as mitigated LPS-induced inflammatory reactions in dairy cows during heat stress. Further studies are necessitated to investigate the underlying mechanisms of L-theanine in LPS alteration and inflammation alleviation.

19.
Front Microbiol ; 12: 670165, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34721310

RESUMEN

Alfalfa silage is one of the main roughages in the production of dairy cow, which can provide nutrition with high quality to improve milk quality and production. Sucrose additions have been widely used to improve the silage quality. In this study, the effects of sucrose on the fermentation quality and bacterial communities of alfalfa silage were investigated here using 0, 0.5, and 1% sucrose ensiling treatments for 15, 30, and 60 days. The ensiling time significantly decreased the crude fiber content and increased the ammonia nitrogen, acetic acid content, and the relative abundance of Enterococcus in the silages. The 1% sucrose-treated silage at 60 days had the lowest neutral detergent fiber acid, acid detergent fiber, and crude fiber content and the highest relative feed value. Moreover, sucrose-treated silage contained less acetic acid, propionic acid, and butyric acid, and had a lower pH than the controls for each duration. Enterobacteriaceae, Klebsiella, and Enterococcus were the dominant genera in all groups, and the relative abundance of Enterococcus and Lactobacillus was higher in the 1% sucrose-treated group than in the control. These results suggested that sucrose supplementation could improve alfalfa silage quality and increase its beneficial bacterial content.

20.
Vet Sci ; 8(7)2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34357930

RESUMEN

The current study employed both amplicon and shotgun sequencing to examine and compare the rumen microbiome in Angus bulls fed with either a backgrounding diet (BCK) or finishing diet (HG), to assess if both methods produce comparable results. Rumen digesta samples from 16 bulls were subjected for microbial profiling. Distinctive microbial profiles were revealed by the two methods, indicating that choice of sequencing approach may be a critical facet in studies of the rumen microbiome. Shotgun-sequencing identified the presence of 303 bacterial genera and 171 archaeal species, several of which exhibited differential abundance. Amplicon-sequencing identified 48 bacterial genera, 4 archaeal species, and 9 protozoal species. Among them, 20 bacterial genera and 5 protozoal species were differentially abundant between the two diets. Overall, amplicon-sequencing showed a more drastic diet-derived effect on the ruminal microbial profile compared to shotgun-sequencing. While both methods detected dietary differences at various taxonomic levels, few consistent patterns were evident. Opposite results were seen for the phyla Firmicutes and Bacteroidetes, and the genus Selenomonas. This study showcases the importance of sequencing platform choice and suggests a need for integrative methods that allow robust comparisons of microbial data drawn from various omic approaches, allowing for comprehensive comparisons across studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...