Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
2.
BMC Genomics ; 25(1): 42, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38191283

RESUMEN

Gene-edited mosquitoes lacking a gamma-interferon-inducible lysosomal thiol reductase-like protein, namely (mosGILTnull) have lower Plasmodium infection, which is linked to impaired ovarian development and immune activation. The transcriptome of mosGILTnull Anopheles gambiae was therefore compared to wild type (WT) mosquitoes by RNA-sequencing to delineate mosGILT-dependent pathways. Compared to WT mosquitoes, mosGILTnull A. gambiae demonstrated altered expression of genes related to oogenesis, 20-hydroxyecdysone synthesis, as well as immune-related genes. Serendipitously, the zero population growth gene, zpg, an essential regulator of germ cell development was found to be one of the most downregulated genes in mosGILTnull mosquitoes. These results provide a crucial missing link between two previous studies on the role of zpg and mosGILT in ovarian development. This study further demonstrates that mosGILT has the potential to serve as a target for the biological control of mosquito vectors and to influence the Plasmodium life cycle within the vector.


Asunto(s)
Anopheles , Animales , Anopheles/genética , Diferenciación Celular , Inmunidad Innata/genética , Mosquitos Vectores/genética , Células Germinativas
3.
mBio ; 15(1): e0225723, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38078744

RESUMEN

IMPORTANCE: When a female mosquito takes a blood meal from a mammalian host, components of the blood meal can affect mosquito fitness and indirectly influence pathogen infectivity. We identified a pathway involving an Anopheles gambiae adiponectin receptor, which, triggered by adiponectin from an incoming blood meal, decreases Plasmodium infection in the mosquito. Activation of this pathway negatively regulates lipophorin expression, an important lipid transporter that both enhances egg development and Plasmodium infection. This is an unrecognized cross-phyla interaction between a mosquito and its vertebrate host. These processes are critical to understanding the complex life cycle of mosquitoes and Plasmodium following a blood meal and may be applicable to other hematophagous arthropods and vector-borne infectious agents.


Asunto(s)
Anopheles , Malaria , Plasmodium , Animales , Femenino , Humanos , Adiponectina , Anopheles/fisiología , Mosquitos Vectores , Plasmodium falciparum , Receptores de Adiponectina
4.
Ticks Tick Borne Dis ; 15(1): 102279, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37972499

RESUMEN

Guinea pigs repeatedly exposed to Ixodes scapularis develop acquired resistance to the ticks (ATR). The molecular mechanisms of ATR have not been fully elucidated, and partially involves immune responses to proteins in tick saliva. In this study, we examined the metabolome of sera of guinea pigs during the development of ATR. Induction of components of the tyrosine metabolic pathway, including hydroxyphenyllactic acid (HPLA), were associated with ATR. We therefore administered HPLA to mice, an animal that does not develop ATR, and exposed the animals to I. scapularis. We also administered nitisinone, a known inhibitor of tyrosine degradation, to another group of mice. The mortality of I. scapularis that fed on mice given HPLA or nitisinone was 26 % and 72 % respectively, compared with 2 % mortality among ticks that fed on control animals. These data indicate that tick bites alter the guinea pig metabolome, and that the tyrosine metabolism pathway can potentially be targeted for I. scapularis control.


Asunto(s)
Ixodes , Animales , Ratones , Cobayas , Ixodes/fisiología , Saliva , Tirosina
5.
Infect Immun ; 91(11): e0028223, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37846980

RESUMEN

Ticks are hematophagous arthropods that use a complex mixture of salivary proteins to evade host defenses while taking a blood meal. Little is known about the immunological and physiological consequences of tick feeding on humans. Here, we performed the first bulk and single-nucleus RNA sequencing (snRNA-seq) of skin and blood of four persons presenting with naturally acquired, attached Ixodes scapularis ticks. Pathways and individual genes associated with innate and adaptive immunity were identified based on bulk RNA sequencing, including interleukin-17 signaling and platelet activation pathways at the site of tick attachment or in peripheral blood. snRNA-seq further revealed that the Hippo signaling, cell adhesion, and axon guidance pathways were involved in the response to an I. scapularis bite in humans. Features of the host response in these individuals also overlapped with that of laboratory guinea pigs exposed to I. scapularis and which acquired resistance to ticks. These findings offer novel insights for the development of new biomarkers for I. scapularis exposure and anti-tick vaccines for human use.


Asunto(s)
Ixodes , Mordeduras de Garrapatas , Humanos , Animales , Cobayas , Ixodes/genética , Secuencia de Bases , Conducta Alimentaria/fisiología , ARN Nuclear Pequeño
6.
PLoS Biol ; 21(10): e3002331, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37862360

RESUMEN

Arthropod-borne pathogens cause some of the most important human and animal infectious diseases. Many vectors acquire or transmit pathogens through the process of blood feeding. Here, we report adiponectin, the most abundant adipocyte-derived hormone circulating in human blood, directly or indirectly inhibits acquisition of the Lyme disease agent, Borrelia burgdorferi, by Ixodes scapularis ticks. Rather than altering tick feeding or spirochete viability, adiponectin or its associated factors induces host histamine release when the tick feeds, which leads to vascular leakage, infiltration of neutrophils and macrophages, and inflammation at the bite site. Consistent with this, adiponectin-deficient mice have diminished pro-inflammatory responses, including interleukin (IL)-12 and IL-1ß, following a tick bite, compared with wild-type animals. All these factors mediated by adiponectin or associated factors influence B. burgdorferi survival at the tick bite site. These results suggest a host adipocyte-derived hormone modulates pathogen acquisition by a blood-feeding arthropod.


Asunto(s)
Grupo Borrelia Burgdorferi , Ixodes , Enfermedad de Lyme , Mordeduras de Garrapatas , Animales , Ratones , Humanos , Adiponectina , Grupo Borrelia Burgdorferi/fisiología , Ixodes/fisiología , Mamíferos
7.
bioRxiv ; 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37577703

RESUMEN

Gene-edited mosquitoes lacking a g amma-interferon-inducible lysosomal thiol reductase-like protein, namely ( mosGILT null ) have lower Plasmodium infection, which is linked to impaired ovarian development and immune activation. The transcriptome of mosGILT null A. gambiae was therefore compared to wild type (WT) by RNA-sequencing to delineate mosGILT-dependent pathways. Compared to WT mosquitoes, mosGILT null A. gambiae demonstrated altered expression of genes related to oogenesis, 20-hydroxyecdysone synthesis, as well as immune-related genes. Serendipitously, the zero population growth gene, zpg , an essential regulator of germ cell development was found to be one of the most downregulated genes in mosGILT null mosquitoes. These results provide the crucial missing link between two previous studies on the role of zpg and mosGILT in ovarian development. This study further demonstrates that mosGILT has the potential to serve as a target for the biological control of mosquito vectors and to influence the Plasmodium life cycle within the vector.

8.
bioRxiv ; 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37577710

RESUMEN

Guinea pigs repeatedly exposed to Ixodes scapularis develop acquired resistance to the ticks (ATR). The molecular mechanisms of ATR have not been fully elucidated, and partially involve immune responses to proteins in tick saliva. In this study, we examined the metabolome of sera of guinea pigs during the development of ATR. Induction of components of the tyrosine metabolic pathway, including hydroxyphenyllactic acid (HPLA), were associated with ATR. We therefore administered HPLA to mice, an animal that does not develop ATR, and exposed the animals to I. scapularis . We also administered nitisinone, a known inhibitor of tyrosine degradation, to another group of mice. The mortality of I. scapularis that fed on mice given HPLA or nitisinone was 26% and 72% respectively, compared with 2% mortality among ticks that fed on control animals. These data indicate that metabolic changes that occur after tick bites contribute to ATR.

9.
Vaccine ; 41(34): 4996-5002, 2023 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-37407406

RESUMEN

Acquired resistance to ticks can develop when animals are repeatedly exposed to ticks. Recently, acquired resistance to Ixodes scapularis was induced in guinea pigs immunized with an mRNA-lipid nanoparticle vaccine (19ISP) encoding 19 I. scapularis proteins. Here, we evaluated specific mRNAs present in 19ISP to identify critical components associated with resistance to ticks. A lipid nanoparticle containing 12 mRNAs which included all the targets within 19ISP that elicited strong humoral responses in guinea pigs, was sufficient to induce robust resistance to ticks. Lipid nanoparticles containing fewer mRNAs or a single mRNA were not able to generate strong resistance to ticks. All lipid nanoparticles containing salp14 mRNA, however, were associated with increased redness at the tick bite site - which is the first manifestation of acquired resistance to ticks. This study demonstrates that more than one I. scapularis target within 19ISP is required for resistance to ticks, and that additional targets may also play a role in this process.


Asunto(s)
Ixodes , Enfermedad de Lyme , Animales , Cobayas , ARN Mensajero , Ixodes/genética
10.
PLoS One ; 18(6): e0287396, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37327235

RESUMEN

'Candidatus Liberibacter solanacearum' (Lso) is a bacterial pathogen infecting several crops and causing damaging diseases. Several Lso haplotypes have been identified. Among the seven haplotypes present in North America, LsoA and LsoB are transmitted by the potato psyllid, Bactericera cockerelli (Sulc), in a circulative and persistent manner. The gut, which is the first organ pathogen encounters, could be a barrier for Lso transmission. However, the molecular interactions between Lso and the psyllid vector at the gut interface remain largely unknown. In this study, we investigated the global transcriptional responses of the adult psyllid gut upon infection with two Lso haplotypes (LsoA and LsoB) using Illumina sequencing. The results showed that each haplotype triggers a unique transcriptional response, with most of the distinct genes elicited by the highly virulent LsoB. The differentially expressed genes were mainly associated with digestion and metabolism, stress response, immunity, detoxification as well as cell proliferation and epithelium renewal. Importantly, distinct immune pathways were triggered by LsoA and LsoB in the gut of the potato psyllid. The information in this study will provide an understanding of the molecular basis of the interactions between the potato psyllid gut and Lso, which may lead to the discovery of novel molecular targets for the control of these pathogens.


Asunto(s)
Hemípteros , Rhizobiaceae , Solanum tuberosum , Animales , Liberibacter , Rhizobiaceae/genética , Haplotipos , Hemípteros/fisiología , América del Norte , Enfermedades de las Plantas/microbiología , Solanum tuberosum/microbiología
11.
Cell Rep ; 41(8): 111673, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36417869

RESUMEN

In North America, the Lyme disease agent, Borrelia burgdorferi, is commonly transmitted by the black-legged tick, Ixodes scapularis. Tick saliva facilitates blood feeding and enhances pathogen survival and transmission. Here, we demonstrate that I. scapularis complement C1q-like protein 3 (IsC1ql3), a tick salivary protein, directly interacts with B. burgdorferi and is important during the initial stage of spirochetal infection of mice. Mice fed upon by B. burgdorferi-infected IsC1ql3-silenced ticks, or IsC1ql3-immunized mice fed upon by B. burgdorferi-infected ticks, have a lower spirochete burden during the early phase of infection compared with control animals. Mechanically, IsC1ql3 interacts with the globular C1q receptor present on the surface of CD4+ and CD8+ T cells, resulting in decreased production of interferon γ. IsC1ql3 is a C1q-domain-containing protein identified in arthropod vectors and has an important role in B. burgdorferi infectivity as the spirochete transitions from the tick to vertebrate host.


Asunto(s)
Ixodes , Enfermedad de Lyme , Ratones , Animales , Interferón gamma , Linfocitos T CD8-positivos , Complemento C1q
12.
Front Immunol ; 13: 979983, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36059468

RESUMEN

Background: Patients after kidney transplantation need to take long-term immunosuppressive and other drugs. Some of these drug side effects are easily confused with the symptoms of Fanconi syndrome, resulting in misdiagnosis and missed diagnosis, and causing serious consequences to patients. Therefore, improving awareness, early diagnosis and treatment of Fanconi syndrome after kidney transplantation is critical. Methods: This retrospective study analyzed 1728 cases of allogeneic kidney transplant patients admitted to the Second Xiangya Hospital of Central South University from July 2016 to January 2021. Two patients with Fanconi syndrome secondary to drugs, adefovir dipivoxil (ADV) and tacrolimus, were screened. We summarized the diagnostic process, clinical data, and prognosis. Results: The onset of Fanconi syndrome secondary to ADV after renal transplantation was insidious, and the condition developed after long-term medication (>10 years). It mainly manifested as bone pain, osteomalacia, and scoliosis in the late stage and was accompanied by obvious proximal renal tubular damage (severe hypophosphatemia, hypokalemia, hypocalcemia, hypouricemia, glycosuria, protein urine, acidosis, etc.) and renal function damage (increased creatinine and azotemia). The pathological findings included mitochondrial swelling and deformity in renal tubular epithelial cells. The above symptoms and signs were relieved after drug withdrawal, but the scoliosis was difficult to rectify. Fanconi syndrome secondary to tacrolimus has a single manifestation, increased creatinine, which can be easily confused with tacrolimus nephrotoxicity. However, it is often ineffective to reduce the dose of tacrolomus, and proximal renal failure can be found in the later stage of disease development. There was no abnormality in the bone metabolism index and imageological examination findings. The creatinine level decreased rapidly, the proximal renal tubule function returned to normal, and no severe electrolyte imbalance or urinary component loss occurred when the immunosuppression was changed from tacrolimus to cyclosporine A. Conclusions: For the first time, drug-induced Fanconi syndrome after kidney transplantation was reported. These results confirmed that the long-term use of ADV or tacrolimus after kidney transplantation may have serious consequences, some of which are irreversible. Greater understanding of Fanconi syndrome after kidney transplantation is necessary in order to avoid incorrect and missed diagnosis.


Asunto(s)
Anemia de Fanconi , Síndrome de Fanconi , Trasplante de Riñón , Insuficiencia Renal , Escoliosis , Aloinjertos , Antivirales/efectos adversos , Creatinina , Anemia de Fanconi/patología , Síndrome de Fanconi/inducido químicamente , Síndrome de Fanconi/diagnóstico , Síndrome de Fanconi/terapia , Humanos , Trasplante de Riñón/efectos adversos , Túbulos Renales Proximales/patología , Estudios Retrospectivos , Escoliosis/inducido químicamente , Escoliosis/patología , Tacrolimus/efectos adversos
13.
mBio ; 13(5): e0116122, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36036625

RESUMEN

Relapsing fever, caused by diverse Borrelia spirochetes, is prevalent in many parts of the world and causes significant morbidity and mortality. To investigate the pathoetiology of relapsing fever, we performed a high-throughput screen of Borrelia-binding host factors using a library of human extracellular and secretory proteins and identified CD55 as a novel host binding partner of Borrelia crocidurae and Borrelia persica, two agents of relapsing fever in Africa and Eurasia. CD55 is present on the surface of erythrocytes, carries the Cromer blood group antigens, and protects cells from complement-mediated lysis. Using flow cytometry, we confirmed that both human and murine CD55 bound to B. crocidurae and B. persica. Given the expression of CD55 on erythrocytes, we investigated the role of CD55 in pathological B. crocidurae-induced erythrocyte aggregation (rosettes), which enables spirochete immune evasion. We showed that rosette formation was partially dependent on host cell CD55 expression. Pharmacologically, soluble recombinant CD55 inhibited erythrocyte rosette formation. Finally, CD55-deficient mice infected with B. crocidurae had a lower pathogen load and elevated proinflammatory cytokine and complement factor C5a levels. In summary, our results indicate that CD55 is a host factor that is manipulated by the causative agents of relapsing fever for immune evasion. IMPORTANCE Borrelia species are causative agents of Lyme disease and relapsing fever infections in humans. B. crocidurae causes one of the most prevalent relapsing fever infections in parts of West Africa. In the endemic regions, B. crocidurae is present in ~17% of the ticks and ~11% of the rodents that serve as reservoirs. In Senegal, ~7% of patients with acute febrile illness were found to be infected with B. crocidurae. There is little information on host-pathogen interactions and how B. crocidurae manipulates host immunity. In this study, we used a high-throughput screen to identify host proteins that interact with relapsing fever-causing Borrelia species. We identified CD55 as one of the host proteins that bind to B. crocidurae and B. persica, the two causes of relapsing fever in Africa and Eurasia. We show that the interaction of B. crocidurae with CD55, present on the surface of erythrocytes, is key to immune evasion and successful infection in vivo. Our study further shows the role of CD55 in complement regulation, regulation of inflammatory cytokine levels, and innate immunity during relapsing fever infection. Overall, this study sheds light on host-pathogen interactions during relapsing fever infection in vivo.


Asunto(s)
Antígenos de Grupos Sanguíneos , Borrelia , Fiebre Recurrente , Humanos , Animales , Ratones , Fiebre Recurrente/epidemiología , Evasión Inmune , Borrelia/fisiología , Roedores , Citocinas
15.
Insects ; 12(12)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34940161

RESUMEN

Autophagy, also known as type II programmed cell death, is a cellular mechanism of "self-eating". Autophagy plays an important role against pathogen infection in numerous organisms. Recently, it has been demonstrated that autophagy can be activated and even manipulated by plant viruses to facilitate their transmission within insect vectors. However, little is known about the role of autophagy in the interactions of insect vectors with plant bacterial pathogens. 'Candidatus Liberibacter solanacearum' (Lso) is a phloem-limited Gram-negative bacterium that infects crops worldwide. Two Lso haplotypes, LsoA and LsoB, are transmitted by the potato psyllid, Bactericera cockerelli and cause damaging diseases in solanaceous plants (e.g., zebra chip in potatoes). Both LsoA and LsoB are transmitted by the potato psyllid in a persistent circulative manner: they colonize and replicate within psyllid tissues. Following acquisition, the gut is the first organ Lso encounters and could be a barrier for transmission. In this study, we annotated autophagy-related genes (ATGs) from the potato psyllid transcriptome and evaluated their expression in response to Lso infection at the gut interface. In total, 19 ATGs belonging to 17 different families were identified. The comprehensive expression profile analysis revealed that the majority of the ATGs were regulated in the psyllid gut following the exposure or infection to each Lso haplotype, LsoA and LsoB, suggesting a potential role of autophagy in response to Lso at the psyllid gut interface.

16.
Sci Transl Med ; 13(620): eabj9827, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34788080

RESUMEN

Ixodes scapularis ticks transmit many pathogens that cause human disease, including Borrelia burgdorferi. Acquired resistance to I. scapularis due to repeated tick exposure has the potential to prevent tick-borne infectious diseases, and salivary proteins have been postulated to contribute to this process. We examined the ability of lipid nanoparticle­containing nucleoside-modified mRNAs encoding 19 I. scapularis salivary proteins (19ISP) to enhance the recognition of a tick bite and diminish I. scapularis engorgement on a host and thereby prevent B. burgdorferi infection. Guinea pigs were immunized with a 19ISP mRNA vaccine and subsequently challenged with I. scapularis. Animals administered 19ISP developed erythema at the bite site shortly after ticks began to attach, and these ticks fed poorly, marked by early detachment and decreased engorgement weights. 19ISP immunization also impeded B. burgdorferi transmission in the guinea pigs. The effective induction of local redness early after I. scapularis attachment and the inability of the ticks to take a normal blood meal suggest that 19ISP may be used either alone or in conjunction with traditional pathogen-based vaccines for the prevention of Lyme disease, and potentially other tick-borne infections.


Asunto(s)
Ixodes , Enfermedad de Lyme , Animales , Cobayas , Liposomas , Enfermedad de Lyme/metabolismo , Enfermedad de Lyme/prevención & control , Nanopartículas , ARN Mensajero , Vacunación , Vacunas Sintéticas , Vacunas de ARNm
17.
Elife ; 102021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34783654

RESUMEN

Adiponectin-mediated pathways contribute to mammalian homeostasis; however, little is known about adiponectin and adiponectin receptor signaling in arthropods. In this study, we demonstrate that Ixodes scapularis ticks have an adiponectin receptor-like protein (ISARL) but lack adiponectin, suggesting activation by alternative pathways. ISARL expression is significantly upregulated in the tick gut after Borrelia burgdorferi infection, suggesting that ISARL signaling may be co-opted by the Lyme disease agent. Consistent with this, RNA interference (RNAi)-mediated silencing of ISARL significantly reduced the B. burgdorferi burden in the tick. RNA-seq-based transcriptomics and RNAi assays demonstrate that ISARL-mediated phospholipid metabolism by phosphatidylserine synthase I is associated with B. burgdorferi survival. Furthermore, the tick complement C1q-like protein 3 interacts with ISARL, and B. burgdorferi facilitates this process. This study identifies a new tick metabolic pathway that is connected to the life cycle of the Lyme disease spirochete.


Many countries around the world are seeing an increase in the number of patients diagnosed with Lyme disease, with often serious joint, heart, and neurologic complications. This illness is caused by species of 'spirochete' bacteria that live and multiply inside black-legged ticks, and get injected into mammals upon a bite. Ticks are not simply 'syringes' however, and a complex relationship is established between spirochetes and their host. This is particularly true since Lyme disease-causing bacteria such as Borrelia burgdorferi rely on ticks to obtain energy and nutrients. Tang, Cao et al. delved into these complex interactions by focusing on the molecular cascades (or pathways) involving adiponectin, a hormone essential for regulating sugar levels and processing fats. Analyses of gene and protein databases highlighted that ticks carry a receptor-like protein for adiponectin but not the hormone itself, suggesting that an alternative pathway is at play. This may involve B. burgdorferi, which gets its fats and sugars from its host. And indeed, experiments showed that ticks produced more of the adiponectin receptor-like protein when they carried B. burgdorferi; conversely, silencing the receptor reduced the number of surviving spirochetes inside the tick. Further exploration showed that the receptor mediates molecular cascades that help to process fat molecules; these are associated with spirochete survival. In addition, the receptor-like protein was activated by C1QL3, a 'complement 1q domain-contained' molecule which might be part of the tick energy-making or immune systems. Larger quantities of C1QL3 were found in ticks upon B. burgdorferi infection, suggesting that the spirochete facilitates an interaction that boosts activity of the adiponectin receptor-like protein. Overall, the work by Tang and Cao et al. revealed a new pathway which B. burgdorferi takes advantage of to infect their host and multiply. Targeting this molecular cascade could help to interfere with the life cycle of the spirochete, as well as fight Lyme disease and other insect-borne conditions.


Asunto(s)
Borrelia burgdorferi/metabolismo , Ixodes/metabolismo , Ixodes/microbiología , Receptores de Adiponectina/metabolismo , Animales , Proteínas de Artrópodos/metabolismo , Vectores Artrópodos/metabolismo , Vectores Artrópodos/microbiología , Enfermedad de Lyme/metabolismo , Enfermedad de Lyme/microbiología , Fosfolípidos/metabolismo , Interferencia de ARN , Receptores de Adiponectina/genética , Transcriptoma
18.
Front Immunol ; 12: 738749, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34531876

RESUMEN

Background: Kidney transplantation from donors who weigh ≤5 kg is performed at only a few transplant centers owing to the high complication and low graft survival rates associated with this approach. Methods: We retrospectively compared the results of kidney transplantation at our center between January 2015 and December 2019 based on the following pediatric donor criteria: donor body weight ≤5 kg (n=32), 5 kg< donor weight ≤20 kg (n=143), and donor weight >20 kg (n=110). We also perform subgroup analysis of kidney transplantation outcomes from ≤5 kg donors, using conventional (dual separate and classic en-bloc KTx)/novel (en-bloc KTx with outflow tract) surgical methods and allocating to adult/pediatric recipients. Results: The death-censored graft survival rates from extremely low body weight ≤5kg at 1 month, and 1, 3, and 5 years were 90.6%, 80.9%, 77.5%, and 73.9%, respectively, which were significantly lower than that from larger body weight pediatric donors. However, the 3-, and 5-year post-transplantation eGFRs were not significantly different between the pediatric and adult recipient group. The thrombosis (18.8%) and urinary leakage (18.8%) rates were significantly higher in the donor weight ≤5 kg group. Compared with 5 kg< donor weight ≤20 kg group, donor weight ≤5kg group was at elevated risk of graft loss due to thrombosis (OR: 13.4) and acute rejection (OR: 6.7). No significant difference on the outcomes of extremely low body weight donor kidney transplantation was observed between adults and pediatric recipients. Urinary leakage rate is significantly lower in the novel operation (8.7%) than in the conventional operation group (44.4%). Conclusions: Although the outcomes of donor body weight ≤5kg kidney transplantation is inferior to that from donors with large body weight, it can be improved through technical improvement. Donors with body weight ≤5 kg can be considered as an useful source to expand the donor pool.


Asunto(s)
Peso Corporal , Selección de Donante , Rechazo de Injerto/etiología , Trasplante de Riñón/efectos adversos , Complicaciones Posoperatorias/etiología , Donantes de Tejidos , Adolescente , Factores de Edad , Niño , Preescolar , Femenino , Supervivencia de Injerto , Humanos , Lactante , Recién Nacido , Masculino , Estudios Retrospectivos , Medición de Riesgo , Factores de Riesgo , Factores de Tiempo , Resultado del Tratamiento
19.
Infect Immun ; 88(12)2020 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-32928964

RESUMEN

Borrelia burgdorferi causes Lyme disease, the most common tick-transmitted illness in North America. When Ixodes scapularis feed on an infected vertebrate host, spirochetes enter the tick gut along with the bloodmeal and colonize the vector. Here, we show that a secreted tick protein, I. scapularisprotein disulfide isomerase A3 (IsPDIA3), enhances B. burgdorferi colonization of the tick gut. I. scapularis ticks in which ispdiA3 has been knocked down using RNA interference have decreased spirochete colonization of the tick gut after engorging on B. burgdorferi-infected mice. Moreover, administration of IsPDIA3 antiserum to B. burgdorferi-infected mice reduced the ability of spirochetes to colonize the tick when feeding on these animals. We show that IsPDIA3 modulates inflammatory responses at the tick bite site, potentially facilitating spirochete survival at the vector-host interface as it exits the vertebrate host to enter the tick gut. These data provide functional insights into the complex interactions between B. burgdorferi and its arthropod vector and suggest additional targets to interfere with the spirochete life cycle.


Asunto(s)
Borrelia burgdorferi/fisiología , Ixodes/metabolismo , Enfermedad de Lyme/transmisión , Proteína Disulfuro Isomerasas/metabolismo , Secuencia de Aminoácidos , Animales , Vectores Arácnidos/microbiología , Línea Celular , Técnicas de Silenciamiento del Gen , Humanos , Inmunidad Humoral , Inflamación/enzimología , Inflamación/genética , Inflamación/metabolismo , Ixodes/enzimología , Ixodes/genética , Proteínas de la Membrana/metabolismo , Ratones , Filogenia , Proteína Disulfuro Isomerasas/genética , Proteína Disulfuro Isomerasas/inmunología , Interferencia de ARN , Proteínas Recombinantes , Alineación de Secuencia , Spirochaetales/fisiología
20.
Sci Rep ; 10(1): 14000, 2020 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-32814781

RESUMEN

'Candidatus Liberibacter solanacearum' (Lso) is a pathogen of solanaceous crops. Two haplotypes of Lso (LsoA and LsoB) are present in North America; both are transmitted by the tomato psyllid, Bactericera cockerelli (Sulc), in a circulative and propagative manner and cause damaging plant diseases (e.g. Zebra chip in potatoes). In this study, we investigated the acquisition and transmission of LsoA or LsoB by the tomato psyllid. We quantified the titer of Lso haplotype A and B in adult psyllid guts after several acquisition access periods (AAPs). We also performed sequential inoculation of tomato plants by adult psyllids following a 7-day AAP and compared the transmission of each Lso haplotype. The results indicated that LsoB population increased faster in the psyllid gut than LsoA. Further, LsoB population plateaued after 12 days, while LsoA population increased slowly during the 16 day-period evaluated. Additionally, LsoB had a shorter latent period and higher transmission rate than LsoA following a 7 day-AAP: LsoB was first transmitted by the adult psyllids between 17 and 21 days following the beginning of the AAP, while LsoA was first transmitted between 21 and 25 days after the beginning of the AAP. Overall, our data suggest that the two Lso haplotypes have distinct acquisition and transmission rates. The information provided in this study will improve our understanding of the biology of Lso acquisition and transmission as well as its relationship with the tomato psyllid at the gut interface.


Asunto(s)
Haplotipos , Hemípteros/microbiología , Insectos Vectores/microbiología , Liberibacter/genética , Solanum lycopersicum/crecimiento & desarrollo , Animales , Hemípteros/fisiología , Insectos Vectores/fisiología , Liberibacter/clasificación , Liberibacter/fisiología , Solanum lycopersicum/microbiología , Solanum lycopersicum/parasitología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/parasitología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...