Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38673127

RESUMEN

During the coal mining process in soft rock mines with abundant water, the rock mass undergoes cyclic loading and unloading at low frequencies due to factors such as excavation. To investigate the mechanical characteristics and energy evolution laws of different water-containing rock masses under cyclic disturbance loading, a creep dynamic disturbance impact loading system was employed to conduct cyclic disturbance experiments on various water-containing soft rocks (0.00%, 1.74%, 3.48%, 5.21%, 6.95%, and 8.69%). A comparative analysis was conducted on the patterns of input energy density, elastic energy density, dissipated energy density, and damage variables of different water-containing soft rocks during the disturbance process. The results indicate that under the influence of disturbance loading, the peak strength of specimens, except for fully saturated samples, is generally increased to varying degrees. Weakness effects on the elastic modulus were observed in samples with 6.95% water content and saturated samples, while strengthening effects were observed in others. The input energy density of samples is mostly stored in the form of elastic strain energy within the samples, and different water-containing samples adapt to external loads within the first 100 cycles, with almost identical trends in energy indicators. Damage variables during the disturbance process were calculated using the maximum strain method, revealing the evolution of damage in the samples. From an energy evolution perspective, these experimental results elucidate the fatigue damage characteristics of water-containing rock masses under the influence of disturbance loading.

2.
Sci Rep ; 14(1): 7097, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38528045

RESUMEN

Accurately estimating large-area crop yields, especially for soybeans, is essential for addressing global food security challenges. This study introduces a deep learning framework that focuses on precise county-level soybean yield estimation in the United States. It utilizes a wide range of multi-variable remote sensing data. The model used in this study is a state-of-the-art CNN-BiGRU model, which is enhanced by the GOA and a novel attention mechanism (GCBA). This model excels in handling intricate time series and diverse remote sensing datasets. Compared to five leading machine learning and deep learning models, our GCBA model demonstrates superior performance, particularly in the 2019 and 2020 evaluations, achieving remarkable R2, RMSE, MAE and MAPE values. This sets a new benchmark in yield estimation accuracy. Importantly, the study highlights the significance of integrating multi-source remote sensing data. It reveals that synthesizing information from various sensors and incorporating photosynthesis-related parameters significantly enhances yield estimation precision. These advancements not only provide transformative insights for precision agricultural management but also establish a solid scientific foundation for informed decision-making in global agricultural production and food security.

3.
Allergol Immunopathol (Madr) ; 50(5): 121-128, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36086972

RESUMEN

BACKGROUND: Sepsis-induced acute lung injury (ALI) is a syndrome associated with inflammation. Cornus iridoid glycoside (CIG), a bioactive component isolated from Corni Fructus, exhibits anti-inflammatory activities. However, the function and underlying mechanisms of CIG in mice with sepsis-induced ALI remain elusive. METHODS: The sepsis-elicited ALI model of mice was established by the induction of cecal ligation and puncture (CLP). The wet/dry (W/D) ratio of lung tissues was examined, and the pathological alterations were determined by hematoxylin and eosin staining. The messenger RNA (mRNA) expressions and serum levels of Interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α (TNF-α) were measured by reverse transcription-quantitative polymerase chain reaction and enzyme-linked immunosorbent serologic assay, respectively. The concentrations of malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) were assessed by biochemical kits. In addition, the relative protein levels of p-p65, p65, phosphorylated- nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (p-IκBα), IκBα, nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) gene were analyzed by Western blotting analysis. RESULTS: CLP enhanced W/D ratio and aggravated pathological changes and scores in mice, which were obviously alleviated by the two concentrations of CIG treatment. CIG treatment notably decreased the CLP-induced mRNA expressions and serum levels of IL-1ß, IL-6, TNF-α, and MDA, but enhanced the decreased concentrations (caused by CLP) of SOD and GSH-Px. Moreover, CIG treatment significantly decreased the ratios of p65/p-p65 and IκBα/p-IκBα caused by CLP, but aggravated the CLP-induced relative protein levels of Nrf2 and HO-1. CONCLUSIONS: CIG obviously ameliorated the sepsis-induced ALI in mice by suppressing inflammation and oxidative stress, which was closely associated with nuclear factor kappa B (NF-κB) and Nrf2-HO-1 signaling pathways.


Asunto(s)
Lesión Pulmonar Aguda , Cornus , Sepsis , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/etiología , Animales , Cornus/genética , Cornus/metabolismo , Inflamación/complicaciones , Interleucina-6 , Glicósidos Iridoides/efectos adversos , Iridoides/efectos adversos , Ratones , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Inhibidor NF-kappaB alfa , FN-kappa B/metabolismo , ARN Mensajero , Sepsis/complicaciones , Sepsis/tratamiento farmacológico , Sepsis/patología , Superóxido Dismutasa/efectos adversos , Factor de Necrosis Tumoral alfa
4.
Artículo en Chino | MEDLINE | ID: mdl-22931777

RESUMEN

OBJECTIVE: To investigate the 4-hydroxynonenal (4-HNE) expression changes and the impact of ulinastatin (UTI) METHODS: Seventy-two healthy Sprague-Dawley rats were randomly divided into three groups: the control group, poisoning group and treatment group, with 24 rats in each group. The model of lung injury was established by intragastric PQ (80 mg/kg) administration in poisoning group and treatment group, and 1 mL saline was administered intragastrically in the control group. The rats in treatment group were injected intraperitoneally with UTI (100 000 U/kg) 30 minutes after PQ administration, and the rats in the control group and poisoning group were intraperitoneally injected with the same volume of saline. After different treatments, the pathological changes and the expression of 4-HNE in lung tissue was detected in 12, 24, and 72 h in three groups. RESULTS: In the poisoning group and treatment group, the expression of 4-HNE in lung tissue of rats were increased in 12 h after poisoning and reached the peak in 48 h; in 72 h after poisoning, the expression of 4-HNE in lung tissue were decreased, but they were still high. Compared with the control group, the expression of 4-HNE in lung tissue of rats were significantly increased in the poisoning group and treatment group (P < 0.05). And compared with the poisoning group, the expression of 4-HNE in lung tissue of rats were significantly decreased in the treatment group (P < 0.01). The pathological changes were observed, including alveolar capillary expansion, diffuse alveolar hemorrhage and alveolar inflammation cell infiltration, were found in lungs of rats in poisoning group and treatment group. There is no significant change in the control group. Compared with the control group, the expression of 4-HNE in lung tissue significantly increased in poisoning group and treatment group (P < 0.01), but the expression in treatment group was lower than in poisoning group (P < 0.01). CONCLUSION: The expression of 4-HNE increased in PQ intoxicated rats. UTI may reduce the expression of 4-HNE and reduce lung injury in PQ intoxicated rats.


Asunto(s)
Aldehídos/metabolismo , Glicoproteínas/farmacología , Lesión Pulmonar/metabolismo , Paraquat/envenenamiento , Animales , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Lesión Pulmonar/patología , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...