Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Cell Signal ; 2(2): 85-93, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34263256

RESUMEN

BACKGROUND AND OBJECTIVES: Neuroinflammation is closely associated with various diseases including neuropathic pain. Microglia are immune cells in the central nervous system which are the main players of immunity and inflammation. Since microglia are activated by nerve injury, and they produce proinflammatory mediators to cause neuropathic pain, targeting activated microglia is considered to be a strategy for treating neuropathic pain. Activation of the cannabinoid CB2 receptor is known to have anti-inflammatory effects in microglia. ABK5-1 is a CB2 subtype selective agonist which inhibits IL-1ß and IL-6 production in the microglia cell line BV-2. The purpose of the current study is to further analyze anti-inflammatory effects of ABK5 in terms of different cytokines and the possible pathway involved in the effect in the BV-2 cell line. METHODS: A cytokine array was performed to screen the effect of ABK5-1 on forty inflammatory mediators in BV-2 cells. Changes of the inflammatory mediators was further supported by mRNA analysis, and a possible signaling molecule that involved the observation was evaluated by western blot. RESULTS: Stimulating BV-2 cells by lipopolysaccharide increased expression of eleven inflammatory mediators, and ABK5-1 treatment resulted in more than a 50% decrease of sICAM1, IL-6, and RANTES. Real-time PCR results showed a decrease of G-CSF, ICAM1, MCP-1, MIP-1α, and MIP-1ß mRNA levels. Western blot analysis showed that ABK5-1 inhibited LPS-induced ERK phosphorylation, which can be a mechanism of ABK5-1-mediated anti-inflammatory effect. CONCLUSIONS: Our current results support the possibility that ABK5-1 is an anti-inflammatory drug for microglia.

2.
Pharmaceuticals (Basel) ; 14(4)2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33921589

RESUMEN

Activation of the CB2 receptor has been shown to have anti-inflammatory and antinociceptive effects without causing psychoactive effects. Previously, we reported that the compound ethyl 2(2-(N-(2,3-dimethylphenyl) phenylsulfonamido)acetamido)benzoate (ABK5) is a CB2 subtype selective agonist with anti-inflammatory and antinociceptive effects. In the present study, we tested four ABK5 derivatives, ABK5-1, ABK5-2, ABK5-5, and ABK5-6, to analyze the structure of ABK5 to obtain CB2-selective agonists with higher affinity and efficacy. Affinity, subtype selectivity, and G-protein coupling were determined by radioligand binding assays. Selected compounds were then subjected to evaluation of anti-inflammatory effects using two different cell lines, Jurkat (ABK5-1 and 5-2) and BV-2 cells (ABK5-1), which are models of T cells and microglia, respectively. ABK5-1, ABK5-2, and ABK5-6 had comparable CB2 binding affinity with ABK5 (and stimulated G-protein coupling), while only ABK5-1 and ABK5-2 maintained CB2-subtype selectivity. ABK5-5 did not bind CB2 in the detectable range. RT-PCR and ELISA analysis showed that the two compounds also inhibit IL-2 and TNF-α production, and they were more efficacious than ABK5 in inhibiting TNF-α production. CXCL-12 mediated chemotaxis was also evaluated by the transwell migration assay, and both ABK5-1 and ABK5-2 inhibited chemotaxis with a stronger effect observed in ABK5-1. In the microglia cell line BV-2, ABK5-1 inhibited IL-1ß and IL-6 production, which suggests this compound has anti-inflammatory effects through targeting multiple immune cells, and may be a candidate for treatment of inflammation.

3.
J Pharmacol Sci ; 145(4): 319-326, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33712283

RESUMEN

Cannabinoid receptors are a potential target for anti-inflammatory and pain therapeutics. There are two subtypes, CB1 and CB2, and Δ9-tetrahydrocannabinol activates both of them, providing an analgesic effect but also psychoactive side effects. The psychoactive side effects are considered to be caused by activation of CB1, but not CB2. ABK5 is a CB2 subtype selective agonist that has a very different structure from known cannabinoid receptor agonists. Here, we report anti-inflammatory effects of ABK5 using the T-cell line Jurkat cells, and antinociceptive effect in an inflammatory pain model in rats. Production of the cytokines IL-2 and TNF-α was measured in stimulated Jurkat cells and MOLT-4 cells, and CXCL12-mediated chemotaxis of Jurkat cells was evaluated by a transwell migration assay. Anti-inflammatory and antinociceptive effects of ABK5 were also evaluated in a hindpaw CFA model in rats. ABK5 significantly decreased production of IL-2 and TNF-α measured as both mRNA and protein levels, and reduced chemotaxis towards CXCL12. It also attenuated edema and increased mechanical threshold in the hindpaw of CFA-treated rats. These results suggest that ABK5 is a good lead compound for the development of potential anti-inflammatory and analgesic agents.


Asunto(s)
Analgésicos/farmacología , Antiinflamatorios/farmacología , Benzoatos/farmacología , Dolor/tratamiento farmacológico , Receptor Cannabinoide CB2/agonistas , Sulfonamidas/farmacología , Animales , Quimiocina CXCL12 , Quimiotaxis/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Humanos , Mediadores de Inflamación/metabolismo , Interleucina-2/metabolismo , Células Jurkat , Ratas Sprague-Dawley , Factor de Necrosis Tumoral alfa/metabolismo
4.
Eur J Pharmacol ; 854: 1-8, 2019 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-30951717

RESUMEN

Cannabinoid CB1 and CB2 receptors are activated by Δ9-tetrahydrocannabinol, a psychoactive component of marijuana. The cannabinoid CB1 receptor is primarily located in the brain and is responsible for the psychoactive side effects, whereas the cannabinoid CB2 receptor is located in immune cells and is an attractive target for immune-related maladies. We identify small molecules that selectively bind to the cannabinoid CB2 receptor and can be further developed into therapeutics. The affinity of three molecules, ABK5, ABK6, and ABK7, to the cannabinoid CB2 receptor was determined with radioligand competition binding. The potency of G-protein coupling was determined with GTPγS binding. The three compounds bound selectively to the cannabinoid CB2 receptor, and no binding to the cannabinoid CB1 receptor was detected up to 10 µM. Immunoblotting studies show that the amount of ERK1/2 and MEK phosphorylation increased in a Gi/o-dependent manner. Furthermore, an immune cell line (Jurkat cells) was treated with ABK5, and as a result, inhibited cell proliferation. These three compounds are novel cannabinoid CB2 receptor agonists and hold promise to be further developed to treat inflammation and the often-associated pain.


Asunto(s)
Receptor Cannabinoide CB2/agonistas , Unión Competitiva , Evaluación Preclínica de Medicamentos , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Células HEK293 , Humanos , Células Jurkat , Ligandos , Receptor Cannabinoide CB2/metabolismo
5.
Mol Pharmacol ; 95(1): 1-10, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30322873

RESUMEN

Cannabinoid receptor 1 (CB1) is a G-protein-coupled receptor that is abundant in the central nervous system. It binds several compounds in its orthosteric site, including the endocannabinoids, arachidonoyl ethanolamide (anandamide) and 2-arachidonoyl glycerol, and the plant-derived Δ9-tetrahydrocannabinol, one of the main psychoactive components of marijuana. It primarily couples to Gi/o proteins to inhibit adenylate cyclase activity and typically induces downstream signaling that is Gi-dependent. Since this receptor is implicated in several maladies, such as obesity, pain, and neurodegenerative disorders, there is interest in developing therapeutics that selectively target this receptor. Allosteric modulators of CB1 offer one new approach that has tremendous therapeutic potential. Here, we reveal receptor- and cellular-level properties consistent with receptor activation by a series of pyrimidinyl biphenylureas (LDK1285, LDK1288, LDK1305, and PSNCBAM1), including promoting binding of the agonist CP55940 with positive cooperativity and inhibiting binding of the inverse agonist SR141716A with negative cooperativity, demonstrated via radioligand binding studies. Consistent with these findings, the allosteric modulators induced cellular internalization of the receptor and recruitment of ß-arrestin 2 in human embryonic kidney cell line 293 cells monitored with confocal and total internal reflective fluorescence microscopy, respectively. These allosteric modulators, however, caused G-protein-independent but ß-arrestin 1-dependent phosphorylation of the downstream kinases extracellular signal-regulated kinase 1/2, mitogen-activated protein kinase, and Src, shown by immunoblotting studies. These results are consistent with the involvement of ß-arrestin and suggest that these allosteric modulators induce biased signaling.


Asunto(s)
Regulación Alostérica/efectos de los fármacos , Compuestos de Fenilurea/farmacología , Receptor Cannabinoide CB1/metabolismo , beta-Arrestina 1/metabolismo , Arrestina beta 2/metabolismo , Sitio Alostérico/efectos de los fármacos , Ácidos Araquidónicos/metabolismo , Línea Celular , Ciclohexanoles/farmacología , Endocannabinoides/metabolismo , Proteínas de Unión al GTP/metabolismo , Glicéridos/metabolismo , Células HEK293 , Humanos , Fosforilación/efectos de los fármacos , Alcamidas Poliinsaturadas/metabolismo , Unión Proteica , Piridinas/farmacología , Rimonabant/farmacología , Transducción de Señal/efectos de los fármacos
6.
J Pharm Sci ; 105(5): 1779-1789, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27020986

RESUMEN

Xenobiotic transporters play key roles in disposition of certain therapeutic agents, although limited information is available on their roles other than pharmacokinetic issues. Here, suppressive effect of multispecific organic cation transporter OCTN1/SLC22A4 on liver fibrosis was proposed in liver injury models. After injection of hepatotoxins such as dimethylnitrosamine (DMN) or concanavalin A, hepatic fibrosis, and oxidative stress, evaluated in terms of Sirius red and 4-hydroxy-2-nonenal staining, respectively, were more severe in liver of octn1/slc22a4 gene knockout (octn1(-/-)) mice than that in wild-type mice. DMN treatment markedly increased α-smooth muscle actin and F4/80, markers of activated stellate and Kupffer cells, respectively, in liver of octn1(-/-), but had less effect in wild-type mice. Thus, octn1/slc22a4 gene deletion results in more severe hepatic fibrosis, oxidative stress, and inflammation. DMN-treated wild-type mice showed increased Octn1 staining and hepatic concentration of its food-derived antioxidant ergothioneine (ERGO). The upregulated Octn1 was co-localized with α-smooth muscle actin. Functional expression of Octn1 was demonstrated in activated human hepatic stellate cell lines, LI90 and LX-2. Provision of ERGO-rich feed ameliorated DMN-induced liver fibrosis and oxidative stress. Overall, Octn1 is upregulated in activated stellate cells, resulting in increased delivery of its substrate antioxidant ERGO and a protective effect against liver fibrosis.


Asunto(s)
Células Estrelladas Hepáticas/metabolismo , Cirrosis Hepática/metabolismo , Cirrosis Hepática/prevención & control , Proteínas de la Membrana/deficiencia , Xenobióticos/metabolismo , Animales , Proteínas Portadoras/análisis , Línea Celular , Femenino , Células HEK293 , Células Estrelladas Hepáticas/química , Humanos , Proteínas de la Membrana/análisis , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Transporte de Catión Orgánico , Simportadores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA