Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 28(24)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38138576

RESUMEN

Canola is the second-largest cultivated oilseed crop in the world and produces meal consisting of about 35-40% proteins. Despite this, less than 1% of the global plant-based protein market is taken up by canola protein. The reason behind such underutilization of canola protein and its rapeseed counterpart could be the harsh conditions of the industrial oil extraction process, the dark colour of the meal, the presence of various antinutrients, the variability in the protein composition based on the source, and the different properties of the two major protein components. Although academic research has shown immense potential for the use of canola protein and its rapeseed counterpart in emulsion development and stabilization, there is still a vast knowledge gap in efficiently utilizing canola proteins as an effective emulsifier in the development of various emulsion-based foods and beverages. In this context, this review paper summarizes the last 15 years of research on canola and rapeseed proteins as food emulsifiers. It discusses the protein extraction methods, modifications made to improve emulsification, emulsion composition, preparation protocols, and emulsion stability results. The need for further improvement in the scope of the research and reducing the knowledge gap is also highlighted, which could be useful for the food industry to rationally select canola proteins and optimize the processing parameters to obtain products with desirable attributes.


Asunto(s)
Brassica napus , Brassica rapa , Emulsiones , Emulsionantes , Alimentos , Proteínas de Plantas
2.
Nat Prod Res ; 37(9): 1444-1455, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-34886720

RESUMEN

Three new constituents: 1,5R-dihydroxy-3,8S-dimethoxy-5,6,7,8-tetrahydroxanthone (1), (3S,4R,16S,17R)-3,16,23-trihydroxyoleana-11,13(18)-dien-28-aldehyde-3-O-ß-D-glucopyranoside (2), and new natural product (S)-gentiandiol (3), along with 41 known compounds were isolated from Tujia ethnomedicine Shuihuanglian, namely, the whole plant of Swertia punicea. Structures of all these compounds were established through extensive spectroscopic techniques, namely 1D, 2D-NMR spectroscopy, HRESIMS analysis, and the absolute configuration of the new compounds was discerned by circular dichroism (CD) spectroscopy. Antioxidative effects of these compounds were evaluated by using the DPPH radical scavenging method, compounds 7, 9 and 14 showed antioxidant activities with IC50 values of 68.9, 50.8 and 48.2 µM, respectively.


Asunto(s)
Swertia , Swertia/química , Espectroscopía de Resonancia Magnética , Medicina Tradicional , Estructura Molecular
3.
RSC Adv ; 11(41): 25141-25157, 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35478917

RESUMEN

The stability and viscoelasticity of an oil-in-water emulsion formed with canola proteins could be significantly improved by heat-induced protein thermal denaturation followed by aggregation at the oil droplet surface. This phenomenon was used to develop emulsion-templated oleogels with improved rheology and used in cake baking. Canola oil (50 wt%)-in-water emulsions stabilized by 1 and 4 wt% canola protein isolates (CPI), prepared by high-pressure homogenization, were dried at 60 °C in a vacuum oven followed by shearing to create the oleogels. Before drying, the emulsions were heated (90 °C for 30 min) to induce protein denaturation. The oleogel from 4 wt% CPI heated emulsions (HE) exhibited the lowest oil loss, highest gel strength, firmness and stickiness compared to all other oleogels. Cake batter prepared with shortening showed the lowest specific gravity, highest viscosity and storage modulus compared to CPI oleogels. Confocal micrographs of shortening cake batters showed smaller air bubbles entrapped in the continuous fat phase. In comparison, the oleogel cake batters showed dispersion of larger air bubbles, oil droplets, and protein aggregates. The oleogel cake showed a darker colour compared to the shortening cake due to the dark colour of CPI. Interestingly, oleogel cakes showed lower hardness, higher cohesiveness and springiness than the shortening cake, which was attributed to the higher cake volume of the former due to the formation of larger air channels stabilized by canola proteins. In conclusion, CPI stabilized emulsion-templated oleogels could be used as a potential shortening replacer in cake and other baking applications.

4.
RSC Adv ; 10(25): 14892-14905, 2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35497134

RESUMEN

Structuring liquid oil into a self-standing semisolid material without trans and saturated fat has become a challenge for the food industry after the recent ban of trans fat by the US Food and Drug Administration and Health Canada. Lately, the use of hydrocolloids such as animal proteins and modified cellulose for oleogel preparation has gained more attention. However, plant proteins have never been explored for the development of oleogels. The present study explored the use of freeze-dried foams prepared using protein concentrates and isolates of pea and faba bean with xanthan gum at different pH values for oil adsorption and subsequent oleogelation. Compared to protein isolate stabilized foams, protein concentrate-stabilized foams displayed (i) higher oil binding capacity (OBC) due to a higher number of smaller pore size; and (ii) lower storage modulus and firmness due to the higher oil content. At all pH values, there was no significant difference between the OBC of different protein isolates, but among the concentrates, pea displayed higher OBC than faba bean at pH 5 and faba bean displayed higher OBC than pea at pH 9. Results showed that such oleogels could be used as a shortening alternative. Cakes prepared using the pea protein-based oleogel at pH 9 displayed a similar specific volume as that of shortening-based cake, although with higher hardness and chewiness.

5.
Nat Prod Res ; 34(17): 2482-2489, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30582363

RESUMEN

Twenty-four compounds were isolated from the roots of Polygonatum cyrtonema Hua, including a new octopamine dimer, named trans-bis(N-feruloyl)octopamine (1). The structure was established on the basis of spectroscopic and chemical methods. All the extracts and compounds were evaluated for cytotoxic and antioxidant activities by using MTT and chemiluminescence assay. The extracts showed activity against MCF-7 and HepG-2 cell lines from IC50 0.30 to 1.01 mg mL-1. Compound 3 exhibited activity against HepG-2 cell lines with IC50 8.99 µM. Compound 7 exhibited activity against Hela cell lines with IC50 2.53 µM and BGC-823 cell lines with IC50 7.77 µM. Moreover, compound 7 showed antioxidant with IC50 12 µM compared to the positive control with IC50 77 µM. Compound 16 exhibited activity against HepG-2 cell lines with IC50 1.05 µM and MCF-7 cell lines with IC50 1.89 µM. These results indicated that this plant might be potential in natural medicine and healthy food.


Asunto(s)
Antineoplásicos/aislamiento & purificación , Antioxidantes/aislamiento & purificación , Polygonatum/química , Antineoplásicos/química , Antineoplásicos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Células HeLa , Células Hep G2 , Humanos , Concentración 50 Inhibidora , Células MCF-7 , Extractos Vegetales/química , Raíces de Plantas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...