Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Phys Chem A ; 127(25): 5402-5413, 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37311006

RESUMEN

Nitrous acid (HONO) is hazardous to the human respiratory system, and the hydrolysis of NO2 is the source of HONO. Hence, the investigation on the removal and transformation of HONO is urgently established. The effects of amide on the mechanism and kinetics of the formation of HONO with acetamide, formamide, methylformamide, urea, and its clusters of the catalyst were studied theoretically. The results show that amide and its small clusters reduce the energy barrier, the substituent improves the catalytic efficiency, and the catalytic effect order is dimer > monohydrate > monomer. Meanwhile, the clusters composed of nitric acid (HNO3), amides, and 1-6 water molecules were investigated in the amide-assisted nitrogen dioxide (NO2) hydrolysis reaction after HONO decomposes by combining the system sampling technique and density functional theory. The study on thermodynamics, intermolecular forces, optics properties of the clusters, as well as the influence of humidity, temperature, atmospheric pressure, and altitude shows that amide molecules promote the clustering and enhance the optical properties. The substituent facilitates the clustering of amide and nitric acid hydrate and lowers the humidity sensitivity of the clusters. The findings will help to control the atmospheric aerosol particle and then reduce the harm of poisonous organic chemicals on human health.

2.
Sci Total Environ ; 699: 134190, 2020 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-31670037

RESUMEN

The initial reactions of organics with •OH are important to understand their transformations and fates in advanced oxidation processes in aqueous phase. Herein, the kinetics and mechanism of •OH-initiated degradation of ciprofloxacin (CIP), an antibiotic of fluoroquinolone class, are obtained using density functional and computational kinetics methods. All feasible mechanisms are considered, including H-abstraction, •OH-addition, and sequential electron proton transfer. Results showed that the H-abstraction is the dominant reaction pathway, and the product radicals P7H, P9H, and P10H are the dominating intermediates. The aqueous phase rate coefficients for the •OH-triggered reaction of ciprofloxacin are calculated from 273 K to 323 K to examine the temperature dependent effect, and the theoretical value of 6.07 × 109 M-1 s-1 at 298 K is close to the corresponding experimental data. Moreover, the intermediates P7H, P9H, and P10H could easily transform to several stable products in the presence of O2, HO2•, and •OH. The peroxy radical, which is generated from the incorporation of H-abstraction product radicals (P7H, P9H, and P10H) with O2, prefers to produce HO2• into the surrounding through direct concerted elimination rather than the indirect mechanism. In addition, the peroxy radical could react with HO2• via triplet and singlet routes, and the former is more favorable due to its smaller barrier compared with the latter. The hydroxyl-substituted CIP has higher activity than its parent compound in their reactions with •OH due to its lower barrier and faster rate. In addition, the -NHC(O)-containing compound IM3-P10-H-4 is harmful to aquatic fish and is the primary product in the •OH-rich environment according to the ecotoxicity assessment computations. This study can improve our comprehension on CIP transformation in complex water environments.


Asunto(s)
Ciprofloxacina/química , Contaminantes Químicos del Agua/química , Radical Hidroxilo , Modelos Químicos , Oxidación-Reducción
3.
J Hazard Mater ; 386: 121636, 2020 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-31753671

RESUMEN

The elimination mechanisms and the dynamics of 2,5-dimethylbenzoquinone/2,6-dimethylbenzoquinone are performed by DFT under the presence of ·OH radical and TiO2-clusters. The rate coefficients, calculated within the atmospheric and combustion temperature range of 200-2000 K, agree well with the experimental data. The subsequent reactions including the bond cleavage of quinone ring, O2 addition or abstraction, the reactions of peroxy radical with NO yielding the precursor of organic aerosol are studied. Gaseous water molecule plays an important role in the transformation of alkoxy radical and exhibits a catalytic performance in the enol-ketone tautomerism. The lifetimes of 2,5-dimethylbenzoquinone/2,6-dimethylbenzoquinone are about 12.04-12.86 h at 298 K, which are in favor of the medium range transport of them in the atmosphere. Significantly, the water environment plays a negative role on the ·OH-degradation of dimethylbenzoquinone. Compared to the quinone ring, 2,5-dimethylbenzoquinone onto (TiO2)n clusters (n = 1-6) is easier to be absorbed by TiO2-clusters through its oxygen site because of its strong chemisorption, which indicates that TiO2-clusters are capable of trapping dimethylbenzoquinones effectively. The water environment could weaken the adsorption of 2,5-dimethylbenzoquinone onto (TiO2)n clusters (n = 1-6) by increasing the adsorption energy. This work reveals the removal of dimethylbenzoquinones and the formation of organic aerosol under polluted environments.

4.
Phys Chem Chem Phys ; 21(31): 17378-17392, 2019 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-31355843

RESUMEN

The oxidation mechanisms and dynamics of 3-methoxy-3-methyl-1-butanol (3M3M1B) initiated by ˙OH radicals were assessed by the density functional theory and canonical variational transition state theory. The effects of ubiquitous water on the title reactions were analyzed by utilizing an implicit solvation model in the present system. The results suggested that aqueous water played a negative role in the ˙OH-initiated degradation of 3M3M1B with an increase in the Gibbs free barriers. Meanwhile, the barriers were almost independent when explicit water molecules were involved in the gaseous phase, which could reduce the rate constant by approximately 3 orders of magnitude. The kinetic calculations showed that the rate constants were smaller by about 15, 9, 8, and 8 orders of magnitude for hydroxyl-, ammonia-, formic acid-, and sulfur acid-participating reactions, respectively, than that from an unassisted reaction. The results indicated that water, hydroxyl, ammonia, formic acid, or sulfur acid could not facilitate the title reaction when performed in the atmosphere. The investigations of the subsequent oxidation processes of the alkyl radical CH3OC(CH3)2CH2C·HOH indicated that CH3OC(CH3)2CH2CHO was the most favorable product by eliminating an HO2˙ radical. Additionally, the HO2˙ radical could serve as a self-catalyst to affect the above reaction through a double proton transfer process. With the introduction of NO, CH3OC(CH3)2CH2COOH and HNO2 were found to be the main products, which may be regarded as the new source of atmospheric nitrous acid. In the NO2-rich environment, the peroxynitrate of CH3OC(CH3)2CH2CH(OONO2)OH could be formed via the reaction of the CH3OC(CH3)2CH2CH(OO˙)OH radical with NO2. The degradation mechanism of CH3OC(CH3)2CH2CH(OONO2)OH in the presence of water, ammonia, and methylamine was demonstrated, and it was shown that water, ammonia, and methylamine could promote the formation of nitric hydrate and nitrate aerosol. The main species detected in the experiment were confirmed by a theoretical study. The atmospheric lifetimes of 3M3M1B in the temperature range of 217-298 K and altitude of 0-12 km were within the range of 6.83-8.64 h. This study provides insights into the transformation of 3M3M1B in a complex environment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA