Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38323656

RESUMEN

OBJECTIVES: To investigate the prognostic impact and pathophysiological characteristics of fragmented QRS complex (fQRS) on patients with connective tissue disease-associated pulmonary arterial hypertension (CTD-PAH). METHODS: This was a multicentre retrospective study recruiting 141 patients with CTD-PAH diagnosed by right heart catheterization (114 cases in the discovery cohort and 27 cases in the validation cohort). fQRS and ST-T change were detected on conventional 12-lead electrocardiogram (ECG). Patients were followed up every 3 months to update their status and the primary end point was all-cause death. Clinical information and ECG characteristics were compared between survival and death groups and Kaplan-Meier curve was used for survival analysis. RESULTS: There were significant differences in age, gender, 6-min walk distance, NT-proBNP, WHO class, presence of fQRS and presence of ST-T change in inferior leads between survival group and death group. Inferior fQRS and ST-T change were significantly associated with right ventricular (RV) dilatation and reduced RV ejection fraction (RVEF). Kaplan-Meier curve showed that all-cause mortality was higher in CTD-PAH with fQRS (p= 0.003) and inferior ST-T change (p= 0.012). Low- and intermediate-risk CTD-PAH with inferior ST-T change had higher all-cause mortality (p= 0.005). The prognostic value of fQRS and inferior ST-T change was validated in external validation cohort. CONCLUSION: The presence of inferior fQRS and ST-T change could predict poor prognosis in CTD-PAH. CLINICAL TRIAL REGISTRATION NUMBER: NCT05980728, https://clinicaltrials.gov.

2.
Phytomedicine ; 120: 155001, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37619321

RESUMEN

BACKGROUND: Glycosides are the pharmacodynamic substances of Buyang Huanwu Decoction (BYHWD) and they exert a protective effect in the brain by inhibiting neuronal pyroptosis of cerebral ischemia-reperfusion (CIR). However, the mechanism by which glycosides regulate neuronal pyroptosis of CIR is still unclear. PURPOSE: A significant part of this study aimed to demonstrate whether glycosides have an anti-pyroptotic effect on CIR by nuclear factor erythroid 2-related factor (Nrf2)-mediated antioxidative mechanism. METHODS: Rats were used in vivo models of middle cerebral artery occlusion and reperfusion (MCAO/R). Neuroprotective effect of glycosides after Nrf2 inhibiting was observed by nerve function score, Nissl staining, Nrf2 fluorescence staining and pyroptotic proteins detection. SH-SY5Y cells were used in vitro models of oxygen-glucose deprivation/reperfusion (OGD/R). Glycosides was evaluated for their effects by measuring cell morphology, survival rate, lactate dehydrogenase (LDH) rate and expression of pyroptotic proteins. Nrf2 si-RNA 54-1 interference with lentivirus was used to create silenced Nrf2 SH-SY5Y cells (si-Nrf2-SH-SY5Y). Glycosides were evaluated on si-Con-SH-SY5Y and si-Nrf2-SH-SY5Y cells based on the expression of Nrf2 signaling pathway, pyroptotic proteins and cell damage manifestation. RESULTS: In vivo, glycosides significantly promoted the fluorescence level of nuclear Nrf2, added more Nissl bodies, reduced neurological function scores and inhibited the pyroptotic proteins level. In vitro, glycosides significantly repaired the morphological damage of cells, promoted the survival rate, reduced the LDH rate, inhibited the pyroptosis. Moreover, antioxidant activity of glycosides was enhanced via Nrf2 activation. Both Nrf2 blocking in vivo and Nrf2 silencing in vitro significantly weakened the pyroptosis inhibitory and neuroprotective effects of glycosides. CONCLUSION: These results suggested for the first time that glycosides inhibited neuronal pyroptosis by regulating the Nrf2-mediated antioxidant stress pathway, thereby exerting brain protection of CIR. As a result of this study, This study improved understanding of the pharmacodynamics and mechanism of BYHWD, as well as providing a Traditional Chinese Medicine (TCM) treatment strategy for CIR .


Asunto(s)
Isquemia Encefálica , Neuroblastoma , Fármacos Neuroprotectores , Daño por Reperfusión , Humanos , Ratas , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Piroptosis , Factor 2 Relacionado con NF-E2/metabolismo , Ratas Sprague-Dawley , Glicósidos/farmacología , Glicósidos/uso terapéutico , Daño por Reperfusión/prevención & control , Neuroblastoma/tratamiento farmacológico , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Transducción de Señal , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/metabolismo , Reperfusión
3.
Arthritis Res Ther ; 25(1): 69, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37118825

RESUMEN

BACKGROUND: Dermatomyositis (DM) is an acquired autoimmune disease that can cause damage to various organs, including the heart muscle. However, the mechanisms underlying myocardial injury in DM are not yet fully understood. METHODS: In this study, we utilized publicly available datasets from the Gene Expression Omnibus (GEO) database to identify hub-genes that are enriched in the immune system process in DM and myocarditis. Weighted gene co-expression network analysis (WGCNA), differentially expressed genes (DEGs) analysis, protein-protein interaction (PPI), and gene ontology (GO) analysis were employed to identify these hub-genes. We then used the CIBERSORT method to analyze immune cell infiltration in skeletal muscle specimens of DM and myocardium specimens of myocarditis respectively. Correlation analysis was performed to investigate the relationship between key genes and infiltrating immune cells. Finally, we predicted regulatory miRNAs of hub-genes through miRNet and validated their expression in online datasets and clinical samples. RESULTS: Using integrated bioinformatics analysis, we identified 10 and 5 hub-genes that were enriched in the immune system process in the database of DM and myocarditis respectively. The subsequent intersections between hub-genes were IFIT3, OAS3, ISG15, and RSAD2. We found M2 macrophages increased in DM and myocarditis compared to the healthy control, associating with the expression of IFIT3, OAS3, ISG15, and RSAD2 in DM and myocarditis positively. Gene function enrichment analysis (GSEA) showed that IFIT3, OAS3, ISG15, and RSAD2 were mainly enriched in type I interferon (IFN) signaling pathway, cellular response to type I interferon, and response to type I interferon. Finally, we verified that the expression of miR-146a-5p was significantly higher in the DM with myocardial injury than those without myocardial injury (p = 0.0009). CONCLUSION: Our findings suggest that IFIT3, OAS3, ISG15, and RSAD2 may play crucial roles in the underlying mechanism of myocardial injury in DM. Serum miR-146a-5p could be a potential biomarker for myocardial injury in DM.


Asunto(s)
Dermatomiositis , Interferón Tipo I , MicroARNs , Miocarditis , Humanos , Biomarcadores , Biología Computacional , Interferón Tipo I/genética
4.
RSC Adv ; 12(43): 28196-28206, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36320239

RESUMEN

Magnesium alloys are attracting increasing attention for the fabrication of temporary implants because of their superior biodegradability and biocompatibility. However, their high degradation rate under physiological conditions limits their clinical applications. In this work, a Nb2O5/Nb2O5-Mg/Mg multilayer coating was prepared on the surface of AZ31 magnesium alloy by magnetron sputtering in order to improve its corrosion resistance. The microstructure and performance of the layers were studied by SEM, AFM, EDS, and XPS, and a scratch tester, nanoindenter, friction tester, and electrochemical workstation, using Nb2O5 monolayer coating as a control. The results show that these two coatings significantly improved the mechanical, tribological, and anticorrosion performance of AZ31 magnesium alloy. Compared with a Nb2O5 monolayer coating, the multilayer coating exhibits an increased adhesion by about 10.6 times, and a decreased wear rate and corrosion current density by one order of magnitude, meaning higher damage resistance. This study provides a feasible strategy for enhancing the properties of ceramic layers on magnesium alloys for medical applications.

5.
Clin Chim Acta ; 537: 167-172, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36332668

RESUMEN

OBJECTIVE: To investigate the diagnostic value of serum chitinase-3-like-1 protein (YKL-40) levels for myocardial involvement in idiopathic inflammatory myopathies (IIM). METHODS: A total of 74 patients with definite IIM who visited Jiangsu Province People's Hospital between May 2018 and January 2022 were enrolled in this retrospective study. Baseline clinical evaluation, laboratory index, electrocardiogram (ECG), echocardiography (ECHO) and cardiac magnetic resonance (CMR) parameters were collected. Serum YKL-40 of all participants was determined by ELISA. Receiver-operating characteristic (ROC) curve was used to assess the diagnostic value of YKL-40 in assessing myocardial involvement in IIM patients. RESULTS: 1. YKL-40 concentration was significantly higher in IIM patients with myocardial injury than without myocardial injury.2. Multivariate logistic regression analysis demonstrated that serum YKL-40 was an independent risk factor for myocardial involvement in IIM.3. YKL-40 > 66.4 ng/ml (AUC = 0.85, 95 % CI 0.75-0.95) predicted myocardial injury in IIM with a sensitivity of 0.75 and specificity of 0.95. CONCLUSION: Serum YKL-40 could serve as a potential biomarker to predict myocardial injury in IIM patients.


Asunto(s)
Miositis , Humanos , Estudios Retrospectivos , Proteína 1 Similar a Quitinasa-3 , Miositis/diagnóstico , Miocardio/patología , Corazón , Biomarcadores
6.
Front Physiol ; 12: 739485, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34899376

RESUMEN

Background: Despite the development of radiation therapy (RT) techniques, concern regarding the serious and irreversible heart injury induced by RT has grown due to the lack of early intervention measures. Although exercise can act as an effective and economic nonpharmacologic strategy to combat fatigue and improve quality of life for cancer survivors, limited data on its application in radiation-induced heart disease (RIHD) and the underlying molecular mechanism are available. Methods: Fifteen young adult male mice were enrolled in this study and divided into 3 groups (including exercised RIHD group, sedentary RIHD group, and controls; n =5 samples/group). While the mice in the control group were kept in cages without irradiation, those in the exercised RIHD group underwent 3weeks of aerobic exercise on the treadmill after radiotherapy. At the end of the 3rd week following RT, FNDC5/irisin expression, cardiac function, aerobic fitness, cardiomyocyte apoptosis, mitochondrial function, and mitochondrial turnover in the myocardium were assessed to identify the protective role of exercise in RIHD and investigate the potential mechanism. Results: While sedentary RIHD group had impaired cardiac function and aerobic fitness than controls, the exercised RIHD mice had improved cardiac function and aerobic fitness, elevated ATP production and the mitochondrial protein content, decreased mitochondrial length, and increased formation of mitophagosomes compared with sedentary RIHD mice. These changes were accompanied by the elevated expression of FNDC5/irisin, a fission marker (DRP1) and mitophagy markers (PINK1 and LC3B) in exercised RIHD group than that of sedentary RIHD group, but the expression of biogenesis (TFAM) and fusion (MFN2) markers was not significantly changed. Conclusion: Exercise could enhance cardiac function and aerobic fitness in RIHD mice partly through an autocrine mechanism via FNDC5/irisin, in which autophagy was selectively activated, suggesting that FNDC5/irisin may act as an intervening target to prevent the development of RIHD.

7.
Analyst ; 146(22): 6955-6959, 2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34661221

RESUMEN

We report here a method to determine target ion concentrations (with Na+ as a model) based on ionophores and electrochemiluminescence (ECL). Ruthenium bipyridine complexes were released from thin polymeric films (plasticized poly(vinyl chloride) also containing a sodium ionophore) into the sample solution following an explicit ion-exchange process (between Na+ and the ruthenium complex). Two signal transducers, tris(2,2'-(pCF3)bipyridine)ruthenium(II) (Ru(p-CF3-bpy)32+) and tris(2,2'-bipyridyl)dichlororuthenium(II) (Ru(bpy)32+), were examined using the sensing film, with the latter providing a more sensitive detection range (ca. 1 to 100 µM) than that of the more hydrophobic one (0.01 to 1 mM). While the ionophore (Na+ ionophore X) offered excellent selectivity to the method, the ruthenium complexes made the measurements independent of the sample pH. Furthermore for complex biological samples such as blood serum, an indirect approach of measuring the ECL of the remaining ruthenium complexes helps avoid background matrix interference to the ECL production at the working electrode, making the ECL method more attractive for real complex samples.


Asunto(s)
Rutenio , 2,2'-Dipiridil , Ionóforos , Mediciones Luminiscentes , Transductores
8.
J Pharm Biomed Anal ; 183: 113144, 2020 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-32070931

RESUMEN

The aim of this study was to investigate the pharmacokinetics and pharmacodynamics of seven main active components of Mahuang decoction (MHD) and its time-concentration-effect relationship. The asthmatic rat model was established by the method of ovalbumin (OVA) sensttization. The plasma concentrations of ephedrine, pseudoephedrine, methylephedrine, amygdalin, liquiritin, cinnamic acid, glycyrrhizic acid in asthmatic model rat were investigated by a selective and rapid HPLC/MS-MS method. Simultaneously, the asthma-involved cytokines including leukotrienes B4 (LTB4), thromboxane B2 (TXB2), 6-Keto-Prostaglandin F1α (6-K-PGF1α) and histamine (HIS) levels in rat plasma were determined by using ELISA. A mathematics method was applied to assess the trend of percentage rate of change among different time intervals of the seven components. The sigmoid E max function was used to establish the PK-PD modeling of MHD. The results indicated that MHD could control or ameliorate asthma. There was a hysteresis between the peaked drug concentration and maximum therapeutic effect of MHD. The PK-PD curves of MHD showed clockwise or counter-clockwise hysteresis loop. In addition, amygdalin might exert a more significant influence on regulating cytokines levels in asthmatic rats among the seven components of MHD.


Asunto(s)
Asma/tratamiento farmacológico , Preparaciones de Plantas/farmacología , Preparaciones de Plantas/farmacocinética , Amigdalina/sangre , Animales , Asma/metabolismo , Cromatografía Líquida de Alta Presión/métodos , Cinamatos/sangre , Correlación de Datos , Medicamentos Herbarios Chinos/farmacocinética , Medicamentos Herbarios Chinos/farmacología , Ephedra sinica , Efedrina/análogos & derivados , Efedrina/sangre , Flavanonas/sangre , Glucósidos/sangre , Ácido Glicirrínico/sangre , Masculino , Ovalbúmina/sangre , Ratas , Ratas Sprague-Dawley
9.
Onco Targets Ther ; 13: 13315-13327, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33408482

RESUMEN

OBJECTIVE: Many aberrantly expressed circular RNAs (circRNAs) play important roles in the development and progression of hepatocellular carcinoma (HCC). However, the exact function of circ_0001175 in HCC cells is unknown. Our study aimed to investigate the expression characteristics of circ_0001175 in HCC and its effects on the proliferation, migration and invasion of HCC cells, and to explore the potential mechanism. MATERIALS AND METHODS: Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were carried out to detect circ_0001175, microRNA-130a-5p (miR-130a-5p) and sorting nexin 5 (SNX5) expressions in HCC tissues and cells; cell counting kit-8 (CCK-8), BrdU and Transwell assays were conducted to detect the proliferation, migration and invasion of HCC cells. A lung metastasis model in nude mice was used to examine the effect of circ_0001175 on the metastasis of HCC cells in vivo. Bioinformatics prediction, luciferase reporter gene experiment, Ago2-RIP experiment and RNA pull-down assay were adopted to identify the binding relationships among circ_0001175, miR-130a-5p and SNX5. RESULTS: Circ_0001175 and SNX5 expressions were up-regulated in HCC tissues and cell lines, while miR-130a-5p expression was down-regulated. Abnormal expressions of circ_0001175, miR-130a-5p and SNX5 were associated with poor clinicopathological features of HCC patients; circ_0001175 facilitated HCC cell proliferation, migration and invasion in vitro and promoted lung metastasis in vivo; miR-130a-5p inhibited the above malignant biological behaviors of HCC cells, and it could reverse the function of circ_0001175. SNX5 was identified as a target gene of miR-130a-5p, and circ_0001175 could sponge miR-130a-5p and up-regulate the expression of SNX5 in HCC cells. CONCLUSION: Circ_0001175 is highly expressed in HCC and facilitates HCC progression through regulating miR-130a-5p/SNX5 axis.

10.
Mol Biol Rep ; 47(2): 1013-1020, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31820312

RESUMEN

Ramie (Boehmeria nivea) is a widely cropped species in southern China due to its high economic value of natural fiber for industry. Development of phloem and xylem is key evidence for generating fiber. However, the MicroRNA (miRNA) profiles of phloem and xylem in ramie have not been reported yet. miRNA belong to a small RNA family which has been recognized as an important regulator for various biological processes. In the present study, we aimed to identify differently expressed miRNAs between phloem and xylem in adult ramie. The results showed that 137 and 122 unique conserved miRNAs were identified from phloem and xylem libraries, respectively. Meanwhile, 4 novel miRNAs were identified from ramie by miRDeep2. Of these miRNAs, 77 conserved miRNAs in ramie were differentially expressed. Among the differentially expressed miRNAs, 44 miRNAs and 33 miRNAs were up-regulated and down-regulated in phloem compared to that in xylem, respectively. The functions of differentially expressed miRNAs were associated with regulating the development and differentiation of phloem and xylem. The present study provides a glance of miRNA profiles for further understanding of miRNA role in ramie development.


Asunto(s)
Boehmeria/genética , MicroARNs/genética , Boehmeria/metabolismo , China , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas/genética , Anotación de Secuencia Molecular/métodos , Floema/genética , Proteínas de Plantas/genética , Transcriptoma/genética , Xilema/genética
11.
Genes (Basel) ; 10(11)2019 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-31653111

RESUMEN

Ramie fibers, one of the most important natural fibers in China, are mainly composed of lignin, cellulose, and hemicellulose. As the high lignin content in the fibers results in a prickly texture, the lignin content is deemed to be an important trait of the fiber quality. In this study, the genetic basis of the fiber lignin content was evaluated, resulting in the identification of five quantitative trait loci (QTLs). Three genes, whole_GLEAN_10021050, whole_GLEAN_10026962, and whole_GLEAN_10009464 that were identified on the QTL regions of qLC7, qLC10, and qLC13, respectively, were found to be homologs of the Arabidopsis lignin biosynthetic genes. Moreover, all three genes displayed differential expression in the barks located in the top and middle parts of the stem, where lignin was not being synthesized and where it was being biosynthesized, respectively. Sequence comparison found that these three genes had wide variations in their coding sequences (CDSs) and putative promoter regions between the two parents, especially the MYB gene whole_GLEAN_10021050, whose protein had insertions/deletions of five amino acids and substitutions of two amino acids in the conserved domain. This evidence indicates that these three genes are potentially involved in lignin biosynthesis in ramie fibers. The QTLs identified from this study provide a basis for the improvement of lignin content and fiber quality in ramie breeding. The characterization of the three candidate genes here will be helpful for the future clarification of their functions in ramie.


Asunto(s)
Boehmeria/genética , Lignina/biosíntesis , Sitios de Carácter Cuantitativo , Transcriptoma , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Lignina/genética
12.
Sheng Li Xue Bao ; 71(3): 424-430, 2019 Jun 25.
Artículo en Chino | MEDLINE | ID: mdl-31218333

RESUMEN

The present study was aimed to investigate the protective effect and anti-inflammation mechanism of astragaloside IV (AST-IV) on cerebral ischemia and reperfusion injury. Following the establishment of cerebral ischemia and reperfusion model in rats by modified suture method, neurological deficit scores and cerebral infarct volume were used to evaluate the pharmacological effect of AST-IV against cerebral ischemia-reperfusion injury. Western blot was used to detect the expression levels of NLRP3, pro-Caspase-1, Caspase-1, pro-IL-1ß, IL-1ß, pro-IL-18, IL-18, phosphorylated and total nuclear factor kappa B (NF-κB)/p65 protein in the brain tissue. The results showed that compared with model group, the intervention of AST-IV decreased the neurological deficit scores, reduced the cerebral infarct volume, decreased the levels of NLRP3, Caspase-1, pro-IL-1ß, IL-1ß, pro-IL-18 and IL-18, and inhibited the expression of phosphorylated NF-κB in brain tissue. The results suggest that AST-IV has a protective effect against cerebral ischemia and reperfusion injury, and its mechanism is related to inhibiting the phosphorylation of NF-κB and NLRP3 inflammasome activation.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Saponinas/farmacología , Triterpenos/farmacología , Animales , Inflamasomas/metabolismo , FN-kappa B/metabolismo , Fosforilación , Ratas , Ratas Sprague-Dawley
13.
Genes (Basel) ; 10(5)2019 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-31121827

RESUMEN

The phloem of the stem of ramie (Boehmeria nivea) is an important source of natural fiber for the textile industry. However, the lignin content in the phloem affects the quality of ramie phloem fiber. In this study, the lignin content and related key gene expression levels were analyzed in the phloem and xylem at different developmental periods. The results showed that the relative expression levels of lignin synthesis-related key genes in the xylem and phloem of the stem gradually decreased from the fast-growing period to the late maturation period, but the corresponding lignin content increased significantly. However, the relative expression levels of a few genes were the highest during the maturation period. During all three periods, the lignin content in ramie stems was positively correlated with the expression of genes, including PAL, C4H and 4CL1 in the phenylpropanoid pathway, F5H and CCoAOMT in the lignin-specific synthetic pathway, and CAD in the downstream pathway of lignin synthesis, but the lignin content was negatively correlated with the expression of genes including 4CL3 in the phenylpropanoid pathway and UDP-GT in the shunt pathway of lignin monomer synthesis. The ramie 4CL3 recombinant protein prefers cinnamic acid as a substrate during catalysis, and it negatively regulates lignin synthesis. It is speculated that ramie 4CL3 is mainly involved in the synthesis of ramie flavonoid compounds, and that 4CL1 is mainly involved in lignin synthesis.


Asunto(s)
Boehmeria/genética , Lignina/genética , Floema/genética , Boehmeria/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/genética , Lignina/biosíntesis , Anotación de Secuencia Molecular , Floema/crecimiento & desarrollo , Metabolismo Secundario/genética , Transcriptoma/genética
14.
Zhongguo Zhong Yao Za Zhi ; 42(19): 3786-3794, 2017 Oct.
Artículo en Chino | MEDLINE | ID: mdl-29235296

RESUMEN

The aim is to study the effect of astragaloside Ⅳ (AST Ⅳ) combined with Panax notoginseng saponins (PNS) on cerebral ischemia-reperfusion injury, and to probe the synergistic mechanism through the pharmacokinetics of the four major components such as AST Ⅳ, ginsenoside Rg1 (Rg1), ginsenoside Rb1 (Rb1), notoginsenoside R1 (R1) in cerebral ischemia-reperfusion rats. Following the establishment of cerebral ischemia/reperfusion model in rats by modified suture method, neurological function score, cerebral infarction area and pathomorphology were used to evaluate the pharmacological effect that the combination of AST Ⅳ and PNS antagonized cerebral ischemia-reperfusion injury; the contents of AST Ⅳ, Rg1, Rb1, R1 in rat plasma of different time points were determined with ultra performance liquid chromatography tandem massspectrometry (UPLC-MS/MS), pharmacokinetic parameters were calculated and pharmacokinetics changes of the main effective components were analyzed. The results showed that AST Ⅳ, PNS alone and their combination could reduce the cerebral infarction area of rats, relieve the behavioral scores of neurologic deficit, improve the pathological changes after cerebral ischemia, the effects of the combination were better. Among AST Ⅳ, Rg1, Rb1, R1, the area under the curve (AUC) was significantly increased, the mean residence time of (MRT0-t) was delayed, the peak concentration (Cmax) was significantly raised, the apparent volume of distribution (Vz/F) was reduced, and the clearance rate in vivo was significantly slowed. It suggested that AST Ⅳ combined with PNS has synergistic enhancement on anti-cerebral ischemia/reperfusion injury, moreover, make the pharmacokinetic behavior of the main effective components change, the mechanism may be associated with prolonging the retention time of the effective components in cerebral ischemia condition, elevating the bioavailability.


Asunto(s)
Ginsenósidos/uso terapéutico , Panax notoginseng/química , Daño por Reperfusión/tratamiento farmacológico , Saponinas/uso terapéutico , Triterpenos/uso terapéutico , Animales , Cromatografía Liquida , Ginsenósidos/farmacocinética , Plantas Medicinales/química , Ratas , Saponinas/farmacocinética , Espectrometría de Masas en Tándem , Triterpenos/farmacocinética
15.
Biomed Pharmacother ; 89: 124-134, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28219050

RESUMEN

The aim of this study was to explore the effect by which the combination of Astragaloside IV (AST IV) and Ginsenoside Rg1 (Rg1) resisted autophagic injury in PC12 cells induced by oxygen glucose deprivation/reoxygenation (OGD/R). We studied the nature of the interaction between AST IV and Rg1 that inhibited autophagy through the Isobologram method, and investigated the synergistic mechanism via the PI3K I/Akt/mTOR and PI3K III/Becline-1/Bcl-2 signaling pathways. Our results showed that, based on the 50% inhibiting concentration (IC50), AST IV combined with Rg1 at a 1:1 ratio resulted in a synergistic effect, whereas the combination of the two had an antagonistic effect on autophagy at ratios of 1:2 and 2:1. Meanwhile, AST IV and Rg1 alone increased cell survival and decreased lactate dehydrogenase (LDH) leakage induced by OGD/R, reduced autophagosomes and the LC3 II positive patch, down-regulated the LC3 II/LC3 I ratio and up-regulated the p62 protein; the 1:1 combination enhanced these effects. Mechanistic study showed that Rg1 and the 1:1 combination increased the phosphorylation of PI3K I, Akt and mTOR; the effects of the combination were greater than those of the drugs alone. AST IV and the 1:1 combination suppressed the expression of PI3K III and Becline-1, and the combination elevated Bcl-2 protein expression; the effects of the combination were better than those of the drugs alone. These results suggest that after 2 h-OGD followed by reoxygenation for 24h, PC12 cells suffer excessive autophagy and damage, which are blocked by AST IV or Rg1; moreover, the combination of AST IV and Rg1 at a 1:1 ratio of their IC50 concentrations has a synergistic inhibition on autophagic injury. The synergistic mechanism may be associated with the PI3K I/Akt/mTOR and PI3K III/Becline-1/Bcl-2 signaling pathways.


Asunto(s)
Autofagia/efectos de los fármacos , Ginsenósidos/farmacología , Glucosa/deficiencia , Saponinas/farmacología , Triterpenos/farmacología , Animales , Apoptosis/efectos de los fármacos , Hipoxia de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Sinergismo Farmacológico , L-Lactato Deshidrogenasa/metabolismo , Fármacos Neuroprotectores/farmacología , Células PC12 , Fagosomas/efectos de los fármacos , Ratas , Transducción de Señal/efectos de los fármacos
16.
Eur J Drug Metab Pharmacokinet ; 42(3): 527-535, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27514823

RESUMEN

BACKGROUND AND OBJECTIVES: Ephedra alkaloids, including ephedrine (EP), pseudoephedrine (PEP) and methylephedrine (MEP), are sympathomimetic compounds with known toxicities but many Ephedra (Ephedrae herba) preparations, such as Ephedra decoction, have been clinically applied for centuries. In order to explore the possible detoxification mechanism of Ephedra alkaloids, four representative compounds in Ephedra decoction (cinnamic acid, amygdalin, glycyrrhizic acid and liquiritin) were studied for their pharmacokinetic effects on Ephedra alkaloids in Sprague-Dawley rats. METHODS: Animals were randomly divided into six groups, with six rats in each. Rats were treated orally with EP-PEP-MEP (20 mg/kg EP + 20 mg/kg PEP + 20 mg/kg MEP) and different combinations of cinnamic acid (3.03 mg/kg), amygdalin (56.97 mg/kg), glycyrrhizic acid (12.42 mg/kg), liquiritin (3.79 mg/kg) with EP-PEP-MEP, and 20 mg/kg EP + 20 mg/kg PEP + 20 mg/kg MEP + 3.03 mg/kg cinnamic acid + 56.97 mg/kg amygdalin + 12.42 mg/kg glycyrrhizic acid + 3.79 mg/kg liquiritin. Blood samples (0.5 mL) were taken from the orbital sinus venous plexus into heparinized tubes at 5, 10, 20, 30, 45, 60, 90, 120, 180, 240, 300 and 360 min (6 rats per time point in each group) following single administration. The concentrations of Ephedra alkaloids in rat plasma were determined using a validated high performance liquid chromatography method. RESULTS: Area under the concentration-time curve from 0 to 360 min (AUC0-t ) of EP, PEP and MEP were 666.99, 650.76 and 632.37 µg·min/mL, respectively. Maximum plasma concentration (C max) of EP, PEP and MEP were 4.15, 4.08 and 3.59 µg/mL, respectively. Mean residence time (MRT) of EP, PEP and MEP were 197.00, 173.97 and 183.87 min, respectively, when the rats were treated with EP-PEP-MEP. Cinnamic acid increased the AUC0-t of EP while decreased C max of EP, amygdalin and glycyrrhizic acid increased C max and AUC0-t of EP and PEP, while liquiritin decreased AUC0-t of EP and PEP. The four representative compounds reduced MRT of EP, PEP and MEP, four compounds decreased AUC0-t of MEP. The EP-PEP-MEP + cinnamic acid + amygdalin + glycyrrhizic acid + liquiritin group increased AUC0-t of EP while decreased MRT of EP, increased MRT of PEP while decreased AUC0-t of PEP. The EP-PEP-MEP + cinnamic acid + amygdalin + glycyrrhizic acid + liquiritin group decreased MRT, AUC0-t and C max of MEP. CONCLUSIONS: Significant changes in pharmacokinetic parameters of EP, PEP and MEP were observed after oral administration with different combinations. The pharmacokinetic results reported here might provide reference for clinical usage of Ephedra alkaloids.


Asunto(s)
Alcaloides/farmacocinética , Amigdalina/farmacocinética , Cinamatos/farmacocinética , Ephedra/química , Flavanonas/farmacocinética , Glucósidos/farmacocinética , Ácido Glicirrínico/farmacocinética , Extractos Vegetales/farmacocinética , Animales , Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos , Masculino , Ratas , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem/métodos
17.
Pharmacogn Mag ; 11(44): 732-9, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26600717

RESUMEN

BACKGROUND: Astragalus and Panax notoginseng are traditional Chinese medicines used for the treatments of cardio-cerebrovascular ischemic diseases, astragaloside IV (AST IV) and ginsenoside Rg1 (Rg1), ginsenoside Rb1 (Rb1), notoginsenoside R1 (R1) are their active components. OBJECTIVE: The purpose of this work was to investigate the effect of AST IV combined with Rg1, Rb1, R1 on energy metabolism in brain tissues after cerebral ischemia-reperfusion in mice. MATERIALS AND METHODS: C57BL/6 mice were randomly divided into 11 groups, treated for 3 days. At 1 h after the last administration, the model of cerebral ischemia-reperfusion injury was established, and brain tissues were detected. RESULTS: All drugs increased the contents of adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP) and the level of total adenine nucleotides (TAN), the combinations increased energy charge (EC), the effects of four active components combination were better. The phosphorylation of AMP-activated protein kinaseα1/2 (p-AMPKα1/2) was increased in AST IV, R1, four active components combination, AST IV + Rg1 and AST IV + R1 groups, the increased effect of four active components combination was greater than that of the active components alone and AST IV + Rb1. All drugs increased glucose transporter 3 (GLUT3) mRNA and protein, and the increases of four active components combination were more obvious than those of the active components alone or some two active components combinations. CONCLUSION: Four active components combination of Astragalus and P. notoginseng have the potentiation on improving of energy metabolism, the mechanism underlying might be associated with promoting the activation of AMPKα1/2, enhancing the expression of GLUT3, thus mediating glucose into nerve cells, increasing the supply and intake of glucose.

18.
Am J Chin Med ; 43(7): 1419-38, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26477799

RESUMEN

Astragalus and Panax notoginseng are commonly used to treat cardio-cerebrovascular diseases in China and are often combined together to promote curative effect. We speculate that the enhancement of the combination on anticerebral ischemia injury may come from the main active components. The purpose of this work was to probe the effects and mechanisms of Astragaloside IV (the active component of Astragalus) combined with Ginsenoside Rg1, Ginsenoside Rb1, and Notoginsenoside R1 (the active components of P. notoginseng) to antagonize ischemia/reperfusion (I/R) injury via inflammation and apoptosis. C57BL/6 mice were randomly divided into sham, model, Astragaloside IV, Ginsenoside Rg1, Ginsenoside Rb1, Notoginsenoside R1, four active components combination, and Edaravone groups. After administration for 3 days, bilateral common carotid arteries (CCA) were occluded with artery clip for 20[Formula: see text]min followed by reperfusion for 24[Formula: see text]h. Our results showed that the survival rate of nerve cell in hippocampal CA1 decreased while the apoptotic rate increased, and the level of caspase-3 protein in brain tissues was elevated, the expressions of TNF-a, IL-1, and ICAM-1 mRNA as well as phosphorylated nuclear factor kappa B (NF-κB) inhibitor protein α (p-IκBa) in brain tissues were up-regulated, and the nuclear translocation rate of NF-κB was raised. Additionally, the protein expressions of phosphorylated tyrosine kinase 1 (p-JAK1), phosphorylated signal transducer and activator of transcription-1 (p-STAT1), glucose regulated protein 78 (GRP78), caspase-12, and phosphorylated c-Jun N-terminal kinases 1/2 (p-JNK1/2) in brain tissues were also significantly strengthened after I/R for 24 h. All drugs could increase neurocyte survival rate in hippocampal CA1, decrease the apoptotic rate, and inhibit caspase-3 protein expression, in contrast, the effects of four active components combination were better than those of active components alone. In addition, Astragaloside IV and Ginsenoside Rg1 could down-regulate the level of TNF-α, and ICAM-1 mRNA, respectively, Notoginsenoside R1 reduced both TNF-α and ICAM-1 mRNA, and the combination of the 4 effective components had inhibitory effects on the expressions of TNF-α, IL-1ß, and ICAM-1 mRNA. Astragaloside IV, Ginsenoside Rg1, Notoginsenoside R1, and 4 effective components combination were able to restrain the phosphorylation of IκBα, and relieve the nuclear translocation rate of NF-κB. Moreover, the effects of the combination are greater than those of active components alone. All drugs could suppress the phosphorylation of JAK1 induced by I/R; meanwhile the expression of p-STAT1 exhibited a decrease in Ginsenoside Rg1 and four active components combination groups. The decreases of p-JAK1 and p-STAT1 in the four active components combination group were more obvious than those in active components alone groups. Astragaloside IV, Ginsenoside Rg1, and Notoginsenoside R1 further augmented GRP78 expression caused by I/R, Notoginsenoside R1 attenuated caspase-12 protein expression, Astragaloside IV and Ginsenoside Rg1 lessened the phosphorylation of JNK1/2, and the four active components combination was capable of up-regulating GRP78 protein while down-regulating the expressions of caspase-12 and p-JNK1/2. Similarly, the effects of the four active components combination were greater than those of effective components alone. These suggested that the combination of the main active components of Astragalus and Panax notoginseng could strengthen protective effects on cerebral ischemia injury via anti-apoptosis and anti-inflammation, and the mechanisms might be associated with restraining the activation of NF-κB and JAK1/STAT1 signal pathways and regulating endoplasmic reticulum stress (ERS) after cerebral ischemia.


Asunto(s)
Apoptosis/efectos de los fármacos , Planta del Astrágalo/química , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/patología , Ginsenósidos/administración & dosificación , Inflamación/tratamiento farmacológico , Inflamación/patología , Neuronas/patología , Panax notoginseng/química , Fitoterapia , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/patología , Saponinas/administración & dosificación , Triterpenos/administración & dosificación , Animales , Apoptosis/genética , Región CA1 Hipocampal/citología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Modelos Animales de Enfermedad , Combinación de Medicamentos , Chaperón BiP del Retículo Endoplásmico , Ginsenósidos/aislamiento & purificación , Ginsenósidos/farmacología , Janus Quinasa 1 , Masculino , Ratones Endogámicos C57BL , FN-kappa B , Fármacos Neuroprotectores , Factor de Transcripción STAT1 , Saponinas/aislamiento & purificación , Saponinas/farmacología , Triterpenos/aislamiento & purificación , Triterpenos/farmacología
19.
J Integr Med ; 13(5): 289-96, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26343099

RESUMEN

Autophagy is a lysosome-mediated degradation process for non-essential or damaged cellular constituents, playing an important homeostatic role in cell survival, differentiation and development to maintain homeostasis. Autophagy is involved in tumors as well as neurodegenerative, cardiovascular and cerebrovascular diseases. Recently, active compounds from traditional Chinese medicine (TCM) have been found to modulate the levels of autophagy in tumor cells, nerve cells, myocardial cells and endothelial cells. Ischemic stroke is a major cause of neurological disability and places a heavy burden on family and society. Regaining function can significantly reduce dependence and improve the quality of life of stroke survivors. In healthy cells, autophagy plays a key role in adapting to nutritional deprivation and eliminating aggregated proteins, however inappropriate activation of autophagy may lead to cell death in cerebral ischemia. This paper reviews the process and the molecular basis of autophagy, as well as its roles in cerebral ischemia and the roles of TCM in modulating its activity.


Asunto(s)
Autofagia , Isquemia Encefálica/patología , Medicina Tradicional China , Humanos , Daño por Reperfusión/terapia
20.
Zhongguo Zhong Yao Za Zhi ; 40(18): 3667-73, 2015 Sep.
Artículo en Chino | MEDLINE | ID: mdl-26983219

RESUMEN

To detect the in vitro probe microdialysis recoveries based on an HPLC-DAD method for simultaneous quantification of nine active ingredients (ephedrine, pseudoephedrine, methylephedrine, amygdalin, liquiritin, cinnamyl alcohol, cinnamic acid, cinnamaldehyde and glycyrrhizic acid) in Mahuang decoction, which provides reference for in vivo pharmacokinetic study. The concentrations of nine active ingredients in dialysate were detected by HPLC-DAD, to investigate the effect of flow rates (incremental method and subtraction method) and intraday stability of the probe recoveries and medium concentrations on the recoveries. Nine active ingredients could be well separated in 52 min. At the perfusion rate of 1.0 µL x min(-1), the relative recoveries of ephedrine, pseudoephedrine, methylephedrine, amygdalin, liquiritin, cinnamyl alcohol, cinnamic acid, cinnamaldehyde and glycyrrhizic acid were (50.95 ± 0.82)%, (52.74 ± 1.13)%, (51.29 ± 0.51)%, (32.56 ± 0.84)%, (45.36 ± 0.83)%, (70.94 ± 0.99)%, (69.98 ± 2.30)%, (71.68 ± 0.63)%, and (22.14 ± 0.48)%, respectively. And the probe kept steady in 7 hours. At the same medium concentration, the probe recoveries decreased exponentially with the increase in flow rates. The recoveries of seven ingredients detected by these two methods were similar at certain flow rates, except for amygdalin and cinnamaldehyde. At the same flow rate, the relative recoveries of cinnamyl alcohol, cinnamic acid and cinnamaldehyde changed greatly (9.55%-16.2%) and the others six ingredients had less change (3.27%-5.71%) with the changes in medium concentrations. Microdialysis method could be used to detect the in vitro recoveries of nine ingredients in Mahuang decoction. Reverse dialysis method could be used for the in vivo probe recovery calibration of ephedrine, pseudoephedrine, methylephedrine, liquiritin, cinnamyl alcohol and cinnamic acid at the flow rate of 2.0 µL x min(-1).


Asunto(s)
Medicamentos Herbarios Chinos/aislamiento & purificación , Ephedra sinica/química , Microdiálisis/métodos , Cromatografía Líquida de Alta Presión , Medicamentos Herbarios Chinos/química , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...