Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Artículo en Inglés | MEDLINE | ID: mdl-36884009

RESUMEN

Currently, there have been widespread investigation conducted into responsive photonic crystal hydrogels (RPCHs) characterized by high selectivity and sensitivity for colorimetric indicators and physical/chemical sensors. In spite of this, it remains challenging to use RPCHs for sensing due to their limited mechanical property and molding capability. In the present study, a double-network structure is proposed to design highly stretchable, sensitive, and reusable ion-detection photonic papers (IDPPs) for assessing the quality of visual and portable comestible liquids (e.g., soy sauce). It is constructed by integrating polyacrylamide and poly-methacryloxyethyl trimethyl ammonium chloride with highly ordered polystyrene microspheres. The double-network structure improves the mechanical properties of IDPPs with their elongation at break increasing from 110 to 1600%. Meanwhile, the optical properties of photonic crystals are retained. The IDPPs achieve a fast ion response by applying control on the swelling behavior of the hydration radius of the counter ions through ion exchange. Given a certain concentration range (0.01-0.10 M), chloride ions can be detected fast (3-30 s) by exchanging ions with a small hydration radius through an IDPP, which is clearly observable. Due to the improvement of mechanical properties and the reversible exchange of ions derived from IDPPs, their reusability is significantly enhanced (>30 times). Characterized by a simple operation, high durability, and excellent sustainability, these IDPPs are promising for practical application in food security and human health assessment.

3.
Artículo en Inglés | MEDLINE | ID: mdl-35830501

RESUMEN

Developing a shape memory polyurethane with high mechanical properties, excellent self-healing has become a huge challenge for the development of smart materials. Herein, we report the design and fabrication of a shape memory polyurethane network terminated with coumarin units (HEOMC-PU) to address this conundrum. The synthesized HEOMC-PU exhibits exceptional mechanical performance with a breaking elongation of 746% and toughness of 55.5 MJ·m-3. By utilizing the dynamically reversible behavior of coumarin units to repair the damaged network, the efficient self-healing performance (99.2%) of HEOMC-PU is obtained. In addition, the prepared network and light-induced dynamic reversibility endow the HEOMC-PU with both liquid-state remoldability and solid-state plasticity, respectively, enabling polyurethane to be recycled and processed multiple times. Furthermore, based on the fluorescence responsive characteristic of coumarin, HEOMC-PU with a fluorescent pattern can be deformed into specific three-dimensional configurations by combining photolithography, self-healing, and the shape memory effect. Such a multilevel and multidimensional anti-counterfeiting platform with rewritable fluorescent patterns and reconfigurable shapes can open up a new encryption approach for future intelligent anti-counterfeiting.

4.
ACS Appl Mater Interfaces ; 14(1): 2369-2380, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34958565

RESUMEN

Inspired by the formation of random sparkling microcrystallines in naturally precious opals, we develop a new strategy to produce a class of unclonable photonic crystal hydrogels (UPCHs) induced by the electrostatic interaction effect, which further achieve unclonable encoding/decoding and random high-encrypted patterns along with an ultrahigh and controllable encoding capacity up to ca. 2 × 10166055. Owing to the randomness of colloidal crystals in the self-assembly process, UPCHs with randomly distributed sparkling spots are endowed with unpredictable/unrepeatable characteristics. This, coupled with the water response of UPCHs with angle dependence and robustness, can upgrade the encryption level and address some limitations of easy fading, limited durability, and high cost in practical uses of existing unclonable materials. Interestingly, UPCHs can be readily patterned to exhibit reliable and rapid authentication by utilizing artificial intelligence (AI) deep learning, which can find broad applications in developing unbreakable and portable information storage/steganography systems not limited to anticounterfeiting.

5.
ACS Appl Mater Interfaces ; 13(7): 9281-9288, 2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33587614

RESUMEN

In this work, Au nanoparticle (AuNP) arrays on shape memory polyurethane (SMPU) substrates serve as flexible materials for tunable localized surface plasmon resonance (LSPR). AuNP arrays prepared by diblock copolymer self-assembly are transferred from rigid silicon wafers onto flexible SMPU substrates with ultrasonic treatment rather than peeling off directly. The resultant AuNP array SMPU films have excellent mechanical properties and stable thermodynamic properties. The LSPR arising from AuNP arrays is increased by negative bending on SMPU substrates, whereas the LSPR is decreased by positive bending. Besides, upon uniaxial tension, the vertical LSPR is increased first then decreased, whereas the parallel LSPR is similar, resulting in the overall LSPR of AuNP arrays being increased first and then decreased with the mechanical uniaxial tension of SMPU. Moreover, the resultant AuNP array SMPU films exhibit excellent flexibility, stability, and homogeneity in practical surface-enhanced Raman scattering (SERS) application. This approach of incorporating AuNP arrays on SMPU substrates for tuning plasmonic properties have great potential applications in SERS, fluorescence enhancement, and newly optoelectronic materials.

6.
Polymers (Basel) ; 12(1)2020 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-31947729

RESUMEN

Novel approach has been constructed for preparing the amphiphilic star copolymer pH/reduction stimuli-responsive cross-linked micelles (SCMs) as a smart drug delivery system for the well-controlled anti-tumor drug doxorubicin (DOX) release. The SCMs had a low CMC value of 5.3 mg/L. The blank and DOX-loaded SCMs both had a spherical shape with sizes around 100-180 nm. In addition, the good stability and well pH/reduction-sensitivity of the SCMs were determined by dynamic light scattering (DLS) as well. The SCMs owned a low release of DOX in bloodstream and normal tissues while it had a fast release in tumor higher glutathione (GSH) concentration and/or lower pH value conditions, which demonstrates their pH/reduction dual-responsiveness. Furthermore, we conducted the thermodynamic analysis to study the interactions between the DOX and polymer micelles in the DOX release process. The values of the thermodynamic parameters at pH 7.4 and at pH 5.0 conditions indicated that the DOX release was endothermic and controlled mainly by the forces of an electrostatic interaction. At pH 5.0 with 10 mM GSH condition, electrostatic interaction, chemical bond, and hydrophobic interactions contributed together on DOX release. With the low cytotoxicity of blank SCMs and well cytotoxicity of DOX-loaded SCMs, the results indicated that the SCMs could form a smart cancer microenvironment-responsive drug delivery system. The release kinetic and thermodynamic analysis offer a theoretical foundation for the interaction between drug molecules and polymer matrices, which helps provide a roadmap for the oriented design and control of anti-cancer drug release for cancer therapy.

7.
Nanoscale Res Lett ; 14(1): 256, 2019 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-31352529

RESUMEN

Well-defined polymer micelles with core-shell structure are good delivery platform for stabilizing silver nanoparticles (AgNPs) in the field of antimicrobials targeting diseases. The rational construction of the polymer structure, an efficient, facile, and green preparation approach, and comprehensive exploration of the derived AgNPs are necessary, such as size, particle stability, antibacterial activity, and other properties. Herein, we designed and assessed the in vitro antimicrobial activity of AgNPs-decorated copolymer micelles with different copolymer topologies. First, linear or four-arm star triblock copolymers with the similar molecular weight and degree of polymerization were obtained, which consisted of DMAEMA for in situ reduction of silver ions to form AgNPs without external reducing agent. HEMA and PEGMA in micellar shell gave an enhanced stability of AgNPs during blood circulation. The combination of computational modeling and experimental results indicated that both types of micelles could fabricate AgNPs with monodisperse and spherical morphology. Star copolymer micelles stabilized AgNPs had smaller average size, better stability, and higher antibacterial activity than those with linear structure, which may due to higher stability of micelles from star copolymers. Furthermore, the cytotoxicity evaluation test showed that the achieved linear or star copolymers micelles stabilized AgNPs had good biocompatibility. This work provides a facile and universal approach in the rational design of micelles stabilized AgNPs with suitable topology for fighting against a wide range of bacterial infections.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...