Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 33(13): 108533, 2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33378683

RESUMEN

Altering ubiquitination by disruption of deubiquitinating enzymes (DUBs) affects hematopoietic stem cell (HSC) maintenance. However, comprehensive knowledge of DUB function during hematopoiesis in vivo is lacking. Here, we systematically inactivate DUBs in mouse hematopoietic progenitors using in vivo small hairpin RNA (shRNA) screens. We find that multiple DUBs may be individually required for hematopoiesis and identify ubiquitin-specific protease 15 (USP15) as essential for HSC maintenance in vitro and in transplantations and Usp15 knockout (KO) mice in vivo. USP15 is highly expressed in human hematopoietic tissues and leukemias. USP15 depletion in murine progenitors and leukemia cells impairs in vitro expansion and increases genotoxic stress. In leukemia cells, USP15 interacts with and stabilizes FUS (fused in sarcoma), a known DNA repair factor, directly linking USP15 to the DNA damage response (DDR). Our study underscores the importance of DUBs in preserving normal hematopoiesis and uncovers USP15 as a critical DUB in safeguarding genome integrity in HSCs and leukemia cells.


Asunto(s)
Enzimas Desubicuitinizantes/fisiología , Células Madre Hematopoyéticas/fisiología , Leucemia/metabolismo , Proteína FUS de Unión a ARN/metabolismo , Proteasas Ubiquitina-Específicas/fisiología , Animales , Línea Celular , Proliferación Celular , Daño del ADN , Reparación del ADN , Hematopoyesis , Células Madre Hematopoyéticas/enzimología , Humanos , Células K562 , Leucemia/enzimología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Animales , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Ubiquitinación
2.
Stem Cells ; 35(1): 147-157, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27350605

RESUMEN

Since the discovery of induced pluripotent stem cells there has been intense interest in understanding the mechanisms that allow a somatic cell to be reprogrammed back to a pluripotent state. Several groups have studied the alterations in gene expression that occur as somatic cells modify their genome to that of an embryonic stem cell. Underpinning many of the gene expression changes are modifications to the epigenetic profile of the associated chromatin. We have used a large-scale shRNA screen to identify epigenetic modifiers that act as barriers to reprogramming. We have uncovered an important role for TRIM28 in cells resisting transition between somatic and pluripotent states. TRIM28 achieves this by maintaining the H3K9me3 repressed state and keeping endogenous retroviruses (ERVs) silenced. We propose that knockdown of TRIM28 during reprogramming results in more plastic H3K9me3 domains, dysregulation of genes nearby H3K9me3 marks, and up regulation of ERVs, thus facilitating the transition through reprogramming. Stem Cells 2017;35:147-157.


Asunto(s)
Reprogramación Celular , Epigénesis Genética , Células Madre Pluripotentes/metabolismo , Proteína 28 que Contiene Motivos Tripartito/metabolismo , Animales , Proliferación Celular , Reprogramación Celular/genética , Cromatina/metabolismo , Retrovirus Endógenos/metabolismo , Técnicas de Silenciamiento del Gen , N-Metiltransferasa de Histona-Lisina , Histonas/metabolismo , Lisina/metabolismo , Metilación , Ratones Transgénicos , Modelos Biológicos , Células Madre Pluripotentes/citología , ARN Interferente Pequeño/metabolismo , Regulación hacia Arriba/genética
3.
Transgenic Res ; 26(2): 187-196, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27807665

RESUMEN

The Polycomb Group protein EZH2 is upregulated in most prostate cancers, and its overexpression is associated with poor prognosis. Most insights into the functional role of EZH2 in prostate cancer have been gained using cell lines and EZH2 inactivation studies. However, the question remains whether overexpression of EZH2 can initiate prostate tumourigenesis or drive tumour progression. Appropriate transgenic mouse models that are required to answer such questions are lacking. We developed one such transgenic mouse model for conditional overexpression of Ezh2. In this transgene, Ezh2 and Luciferase are transcribed from a single open reading frame. The latter gene enables intravital bioluminescent imaging of tissues expressing this transgene, allowing the detection of tumour outgrowth and potential metastatic progression over time. Prostate-specific Ezh2 overexpression by crossbreeding with Probasin-Cre mice led to neoplastic prostate lesions at low incidence and with a long latency. Compounding a previously described Bmi1-transgene and Pten-deficiency prostate cancer mouse model with the Ezh2 transgene did not enhance tumour progression or drive metastasis formation. In conclusion, we here report the generation of a wildtype Ezh2 overexpression mouse model that allows for intravital surveillance of tissues with activated transgene. This model will be an invaluable tool for further unravelling the role of EZH2 in cancer.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2/biosíntesis , Fosfohidrolasa PTEN/genética , Complejo Represivo Polycomb 1/genética , Neoplasias de la Próstata/genética , Proteínas Proto-Oncogénicas/genética , Animales , Modelos Animales de Enfermedad , Proteína Potenciadora del Homólogo Zeste 2/genética , Regulación de la Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Transgénicos , Neoplasias de la Próstata/patología
4.
Gastroenterology ; 151(4): 684-697.e12, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27342214

RESUMEN

BACKGROUND & AIMS: The polycomb repressive complex 2 (PRC2) regulates differentiation by contributing to repression of gene expression and thereby stabilizing the fate of stem cells and their progeny. PRC2 helps to maintain adult stem cell populations, but little is known about its functions in intestinal stem cells. We studied phenotypes of mice with intestine-specific deletion of the PRC2 proteins embryonic ectoderm development (EED) (a subunit required for PRC2 function) and enhancer of zeste homolog 2 (EZH2) (a histone methyltransferase). METHODS: We performed studies of AhCre;EedLoxP/LoxP (EED knockout) mice and AhCre;Ezh2LoxP/LoxP (EZH2 knockout) mice, which have intestine-specific disruption in EED and EZH2, respectively. Small intestinal crypts were isolated and subsequently cultured to grow organoids. Intestines and organoids were analyzed by immunohistochemical, in situ hybridization, RNA sequence, and chromatin immunoprecipitation methods. RESULTS: Intestines of EED knockout mice had massive crypt degeneration and lower numbers of proliferating cells compared with wild-type control mice. Cdkn2a became derepressed and we detected increased levels of P21. We did not observe any differences between EZH2 knockout and control mice. Intestinal crypts from EED knockout mice had signs of aberrant differentiation of uncommitted crypt cells-these differentiated toward the secretory cell lineage. Furthermore, crypts from EED-knockout mice had impaired Wnt signaling and concomitant loss of intestinal stem cells, this phenotype was not reversed upon ectopic stimulation of Wnt and Notch signaling in organoids. Analysis of gene expression patterns from intestinal tissues of EED knockout mice showed dysregulation of several genes involved in Wnt signaling. Wnt signaling was regulated directly by PRC2. CONCLUSIONS: In intestinal tissues of mice, PRC2 maintains small intestinal stem cells by promoting proliferation and preventing differentiation in the intestinal stem cell compartment. PRC2 controls gene expression in multiple signaling pathways that regulate intestinal homeostasis. Sequencing data are available in the genomics data repository GEO under reference series GSE81578; RNA sequencing data are available under subseries GSE81576; and ChIP sequencing data are available under subseries GSE81577.


Asunto(s)
Células Madre Adultas/fisiología , Intestinos/citología , Complejo Represivo Polycomb 2/deficiencia , Animales , Secuencia de Bases , Diferenciación Celular , Linaje de la Célula , Proliferación Celular , Inmunoprecipitación de Cromatina , Proteína Potenciadora del Homólogo Zeste 2/deficiencia , Mucosa Intestinal/metabolismo , Ratones , Ratones Noqueados , Complejo Represivo Polycomb 2/genética , Vía de Señalización Wnt
5.
J Exp Med ; 211(9): 1759-77, 2014 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-25113974

RESUMEN

Histone ubiquitination at DNA breaks is required for activation of the DNA damage response (DDR) and DNA repair. How the dynamic removal of this modification by deubiquitinating enzymes (DUBs) impacts genome maintenance in vivo is largely unknown. To address this question, we generated mice deficient for Ub-specific protease 3 (USP3; Usp3Δ/Δ), a histone H2A DUB which negatively regulates ubiquitin-dependent DDR signaling. Notably, USP3 deletion increased the levels of histone ubiquitination in adult tissues, reduced the hematopoietic stem cell (HSC) reserves over time, and shortened animal life span. Mechanistically, our data show that USP3 is important in HSC homeostasis, preserving HSC self-renewal, and repopulation potential in vivo and proliferation in vitro. A defective DDR and unresolved spontaneous DNA damage contribute to cell cycle restriction of Usp3Δ/Δ HSCs. Beyond the hematopoietic system, Usp3Δ/Δ animals spontaneously developed tumors, and primary Usp3Δ/Δ cells failed to preserve chromosomal integrity. These findings broadly support the regulation of chromatin ubiquitination as a key pathway in preserving tissue function through modulation of the response to genotoxic stress.


Asunto(s)
Daño del ADN/fisiología , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo , Animales , Carcinogénesis , Proliferación Celular , Senescencia Celular , Roturas del ADN de Doble Cadena , Reparación del ADN/fisiología , Femenino , Histonas/metabolismo , Homeostasis , Linfopenia/etiología , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Proteasas Ubiquitina-Específicas/deficiencia , Proteasas Ubiquitina-Específicas/genética , Ubiquitinación
6.
Stem Cells ; 31(9): 1910-20, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23712803

RESUMEN

Specification of the cellular hierarchy in the mammary gland involves complex signaling that remains poorly defined. Polycomb group proteins are known to contribute to the maintenance of stem cell identity through epigenetic modifications, leading to stable alterations in gene expression. The polycomb protein family member EZH2 is known to be important for stem cell maintenance in multiple tissues, but its role in mammary gland development and differentiation remains unknown. Our analyses show that EZH2 is predominantly expressed in luminal cells of the mouse mammary epithelium. As mammary gland development occurs mostly after birth, the analysis of EZH2 gene function in postnatal development is precluded by embryonic lethality of conventional EZH2 knockout mice. To investigate the role of EZH2 in normal mammary gland epithelium, we have generated novel transgenic mice that express doxycycline-regulatable short hairpin (sh) RNAs directed against Ezh2. Knockdown of EZH2 results in delayed outgrowth of the mammary epithelium during puberty, due to impaired terminal end bud formation and ductal elongation. Furthermore, our results demonstrate that EZH2 is required to maintain the luminal cell pool and may limit differentiation of luminal progenitors into CD61(+) differentiated luminal cells, suggesting a role for EZH2 in mammary luminal cell fate determination. Consistent with this, EZH2 knockdown reduced lobuloalveolar expansion during pregnancy, suggesting EZH2 is required for the differentiation of luminal progenitors to alveolar cells.


Asunto(s)
Glándulas Mamarias Animales/crecimiento & desarrollo , Glándulas Mamarias Animales/metabolismo , Morfogénesis , Complejo Represivo Polycomb 2/genética , Células Madre/citología , Células Madre/metabolismo , Animales , Proteína Potenciadora del Homólogo Zeste 2 , Femenino , Técnicas de Silenciamiento del Gen , Glándulas Mamarias Animales/citología , Ratones , Ratones Endogámicos C57BL , Complejo Represivo Polycomb 2/metabolismo , Embarazo , Interferencia de ARN , Reproducibilidad de los Resultados
7.
Proc Natl Acad Sci U S A ; 110(7): E593-601, 2013 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-23359713

RESUMEN

The epigenetic regulator Bmi1 controls proliferation in many organs. Reexpression of cell cycle proteins such as cyclin-dependent kinases (CDKs) is a hallmark of neuronal apoptosis in neurodegenerative diseases. Here we address the potential role of Bmi1 as a key regulator of cell cycle proteins during neuronal apoptosis. We show that several cell cycle proteins are expressed in different models of retinal degeneration and required in the Rd1 photoreceptor death process. Deleting E2f1, a downstream target of CDKs, provided temporary protection in Rd1 mice. Most importantly, genetic ablation of Bmi1 provided extensive photoreceptor survival and improvement of retinal function in Rd1 mice, mediated by a decrease in cell cycle markers and regulators independent of p16(Ink4a) and p19(Arf). These data reveal that Bmi1 controls the cell cycle-related death process, highlighting this pathway as a promising therapeutic target for neuroprotection in retinal dystrophies.


Asunto(s)
Apoptosis/fisiología , Proteínas de Ciclo Celular/metabolismo , Epigénesis Genética/fisiología , Regulación de la Expresión Génica/fisiología , Complejo Represivo Polycomb 1/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Degeneración Retiniana/metabolismo , Análisis de Varianza , Animales , Factor de Transcripción E2F1/metabolismo , Epigénesis Genética/genética , Regulación de la Expresión Génica/genética , Técnicas Histológicas , Ratones , Ratones Noqueados , Microscopía Fluorescente , Complejo Represivo Polycomb 1/genética , Proteínas Proto-Oncogénicas/genética
8.
PLoS One ; 7(5): e35943, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22574128

RESUMEN

Bmi1 is a member of the polycomb repressive complex 1 and plays different roles during embryonic development, depending on the developmental context. Bmi1 over expression is observed in many types of cancer, including tumors of astroglial and neural origin. Although genetic depletion of Bmi1 has been described to result in tumor inhibitory effects partly through INK4A/Arf mediated senescence and apoptosis and also through INK4A/Arf independent effects, it has not been proven that Bmi1 can be causally involved in the formation of these tumors. To see whether this is the case, we developed two conditional Bmi1 transgenic models that were crossed with GFAP-Cre mice to activate transgenic expression in neural and glial lineages. We show here that these mice generate intermediate and anterior lobe pituitary tumors that are positive for ACTH and beta-endorphin. Combined transgenic expression of Bmi1 together with conditional loss of Rb resulted in pituitary tumors but was insufficient to induce medulloblastoma therefore indicating that the oncogenic function of Bmi1 depends on regulation of p16(INK4A)/Rb rather than on regulation of p19(ARF)/p53. Human pituitary adenomas show Bmi1 overexpression in over 50% of the cases, which indicates that Bmi1 could be causally involved in formation of these tumors similarly as in our mouse model.


Asunto(s)
Proteína Ácida Fibrilar de la Glía/metabolismo , Integrasas/metabolismo , Proteínas Nucleares/genética , Neoplasias Hipofisarias/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Represoras/genética , Transgenes/genética , Animales , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Expresión Génica , Humanos , Meduloblastoma/genética , Meduloblastoma/patología , Ratones , Ratones Transgénicos , Neoplasias Hipofisarias/patología , Complejo Represivo Polycomb 1 , Proteína de Retinoblastoma/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , betaendorfina/metabolismo
9.
J Clin Invest ; 122(5): 1920-32, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22505453

RESUMEN

Prostate cancer (PCa) is a major lethal malignancy in men, but the molecular events and their interplay underlying prostate carcinogenesis remain poorly understood. Epigenetic events and the upregulation of polycomb group silencing proteins including Bmi1 have been described to occur during PCa progression. Here, we found that conditional overexpression of Bmi1 in mice induced prostatic intraepithelial neoplasia, and elicited invasive adenocarcinoma when combined with PTEN haploinsufficiency. In addition, Bmi1 and the PI3K/Akt pathway were coactivated in a substantial fraction of human high-grade tumors. We found that Akt mediated Bmi1 phosphorylation, enhancing its oncogenic potential in an Ink4a/Arf-independent manner. This process also modulated the DNA damage response and affected genomic stability. Together, our findings demonstrate the etiological role of Bmi1 in PCa, unravel an oncogenic collaboration between Bmi1 and the PI3K/Akt pathway, and provide mechanistic insights into the modulation of Bmi1 function by phosphorylation during prostate carcinogenesis.


Asunto(s)
Adenocarcinoma/metabolismo , Reparación del ADN , Proteínas Nucleares/metabolismo , Neoplasia Intraepitelial Prostática/metabolismo , Neoplasias de la Próstata/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Represoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Adenocarcinoma/enzimología , Adenocarcinoma/patología , Animales , Línea Celular Tumoral , Transformación Celular Neoplásica , Roturas del ADN de Doble Cadena , Activación Enzimática , Inestabilidad Genómica , Haploinsuficiencia , Histonas/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Ratones Transgénicos , Clasificación del Tumor , Trasplante de Neoplasias , Proteínas Nucleares/genética , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Fosforilación , Complejo Represivo Polycomb 1 , Próstata/metabolismo , Próstata/patología , Neoplasia Intraepitelial Prostática/enzimología , Neoplasia Intraepitelial Prostática/patología , Neoplasias de la Próstata/enzimología , Neoplasias de la Próstata/patología , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas/genética , Proteínas Represoras/genética , Transducción de Señal , Ubiquitinación
10.
Curr Biol ; 18(14): 1094-9, 2008 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-18635350

RESUMEN

PolycombGroup (PcG) proteins are epigenetic silencers involved in maintaining cellular identity, and their deregulation can result in cancer [1]. Mice without the PcG gene Bmi1 are runted and suffer from progressive loss of hematopoietic and neural stem cells [2-4]. Here, we assess the effects of Bmi1 on stem cells and differentiation of an epithelial tissue in vivo. We chose the mammary gland because it allows limiting dilution transplantations [5, 6] and because Bmi1 is overexpressed in breast cancer [7, 8]. Our analyses show that Bmi1 is expressed in all cells of the mouse mammary gland and is especially high in luminal cells. Loss of Bmi1 results in a severe mammary-epithelium growth defect, which can be rescued by codeletion of the Ink4a/Arf locus or pregnancy. Even though mammary stem cells are present in the absence of Bmi1, their activity is reduced, and this is only partially due to Ink4a/Arf expression. Interestingly, loss of Bmi1 causes premature lobuloalveolar differentiation, whereas overexpression of Bmi1 inhibits lobuloalveolar differentiation induced by pregnancy hormones. Because Bmi1 affects not only mammary stem cells but also more committed cells, our data warrant a more detailed analysis of the different roles of Bmi1 in breast-cancer etiology.


Asunto(s)
Glándulas Mamarias Animales/citología , Proteínas Nucleares/fisiología , Proteínas Proto-Oncogénicas/fisiología , Proteínas Represoras/fisiología , Células Madre/citología , Animales , Diferenciación Celular/fisiología , Proliferación Celular , Células Epiteliales/citología , Células Epiteliales/metabolismo , Femenino , Glándulas Mamarias Animales/crecimiento & desarrollo , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/trasplante , Ratones , Ratones Noqueados , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Complejo Represivo Polycomb 1 , Embarazo , Proteínas Proto-Oncogénicas/deficiencia , Proteínas Proto-Oncogénicas/genética , Proteínas Represoras/genética , Células Madre/metabolismo
11.
Cell ; 133(4): 727-41, 2008 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-18485879

RESUMEN

p53 and p19(ARF) are tumor suppressors frequently mutated in human tumors. In a high-throughput screen in mice for mutations collaborating with either p53 or p19(ARF) deficiency, we identified 10,806 retroviral insertion sites, implicating over 300 loci in tumorigenesis. This dataset reveals 20 genes that are specifically mutated in either p19(ARF)-deficient, p53-deficient or wild-type mice (including Flt3, mmu-mir-106a-363, Smg6, and Ccnd3), as well as networks of significant collaborative and mutually exclusive interactions between cancer genes. Furthermore, we found candidate tumor suppressor genes, as well as distinct clusters of insertions within genes like Flt3 and Notch1 that induce mutants with different spectra of genetic interactions. Cross species comparative analysis with aCGH data of human cancer cell lines revealed known and candidate oncogenes (Mmp13, Slamf6, and Rreb1) and tumor suppressors (Wwox and Arfrp2). This dataset should prove to be a rich resource for the study of genetic interactions that underlie tumorigenesis.


Asunto(s)
Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Redes Reguladoras de Genes , Genes Supresores de Tumor , Neoplasias/genética , Proteína p53 Supresora de Tumor/metabolismo , Animales , Línea Celular Tumoral , Clonación Molecular , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Genes p53 , Genómica/métodos , Humanos , Ratones , Ratones Noqueados , Mutagénesis Insercional , Neoplasias/metabolismo , Análisis de Secuencia de ADN
12.
Cancer Cell ; 12(4): 328-41, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17936558

RESUMEN

The Polycomb group and oncogene Bmi1 is required for the proliferation of various differentiated cells and for the self-renewal of stem cells and leukemic cancer stem cells. Repression of the Ink4a/Arf locus is a well described mechanism through which Bmi1 can exert its proliferative effects. However, we now demonstrate in an orthotopic transplantation model for glioma, a type of cancer harboring cancer stem cells, that Bmi1 is also required for tumor development in an Ink4a/Arf-independent manner. Tumors derived from Bmi1;Ink4a/Arf doubly deficient astrocytes or neural stem cells have a later time of onset and different histological grading. Moreover, in the absence of Ink4a/Arf, Bmi1-deficient cells and tumors display changes in differentiation capacity.


Asunto(s)
Astrocitos/metabolismo , Neoplasias Encefálicas/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Glioblastoma/metabolismo , Neuronas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal , Células Madre/metabolismo , Células 3T3 , Animales , Astrocitos/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Diferenciación Celular , Proliferación Celular , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Células Cultivadas , Inhibidor p16 de la Quinasa Dependiente de Ciclina/deficiencia , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Glioblastoma/patología , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Ratones Desnudos , Mutación , Estadificación de Neoplasias , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Neuronas/patología , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Fenotipo , Complejo Represivo Polycomb 1 , Proteínas Proto-Oncogénicas/deficiencia , Proteínas Proto-Oncogénicas/genética , Proteínas Represoras/genética , Transducción de Señal/genética , Células Madre/patología , Factores de Tiempo , Transducción Genética
13.
Adv Exp Med Biol ; 572: 209-15, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17249577

RESUMEN

Retinitis pigmentosa (RP) is a heterogeneous group of genetic disorders leading to blindness, which remain untreatable at present. Rd1 mice represent a recognized model of RP, and so far only GDNF treatment provided a slight delay in the retinal degeneration in these mice. Bmi1, a transcriptional repressor, has recently been shown to be essential for neural stem cell (NSC) renewal in the brain, with an increased appearance of glial cells in vivo in Bmi1 knockout (Bmi1-/-) mice. One of the roles of glial cells is to sustain neuronal function and survival. In the view of a role of the retinal Miller glia as a source of neural protection in the retina, the increased astrocytic population in the Bmi1-/- brain led us to investigate the effect of Bmi1 loss in Rd1 mice. We observed an increase of Müller glial cells in Rd1-Bmi1-/- retinas compared to Rd1. Moreover, Rd1-Bmi1-/- mice showed 7-8 rows of photoreceptors at 30 days of age (P30), while in Rd1 littermates there was a complete disruption of the outer nuclear layer (ONL). Preliminary ERG results showed a responsiveness of Rd1-Bmi1-/- mice in scotopic vision at P35. In conclusion, Bmi1 loss prevented, or rescued, photoreceptors from degeneration to an unanticipated extent in Rd1 mice. In this chapter, we will first provide a brief review of our work on the cortical NSCs and introduce the Bmi1 oncogene, thus offering a rational to our observations on the retina.


Asunto(s)
Proteínas Nucleares/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Represoras/genética , Degeneración Retiniana/genética , Animales , Proliferación Celular , Modelos Animales de Enfermedad , Electrorretinografía , Ratones , Ratones Noqueados , Ratones Transgénicos , Modelos Biológicos , Neuroglía/metabolismo , Neuronas/citología , Fármacos Neuroprotectores/farmacología , Complejo Represivo Polycomb 1 , Retina/metabolismo , Degeneración Retiniana/metabolismo , Células Madre/citología
14.
J Neurosci ; 25(24): 5774-83, 2005 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-15958744

RESUMEN

The polycomb transcriptional repressor Bmi1 promotes cell cycle progression, controls cell senescence, and is implicated in brain development. Loss of Bmi1 leads to a decreased brain size and causes progressive ataxia and epilepsy. Recently, Bmi1 was shown to control neural stem cell (NSC) renewal. However, the effect of Bmi1 loss on neural cell fate in vivo and the question whether the action of Bmi1 was intrinsic to the NSCs remained to be investigated. Here, we show that Bmi1 is expressed in the germinal zone in vivo and in NSCs as well as in progenitors proliferating in vitro, but not in differentiated cells. Loss of Bmi1 led to a decrease in proliferation in zones known to contain progenitors: the newborn cortex and the newborn and adult subventricular zone. This decrease was accentuated in vitro, where we observed a drastic reduction in NSC proliferation and renewal because of NSC-intrinsic effects of Bmi1 as shown by the means of RNA interference. Bmi1(-/-) mice also presented more astrocytes at birth, and a generalized gliosis at postnatal day 30. At both stages, colocalization of bromodeoxyuridine and GFAP demonstrated that Bmi1 loss did not prevent astrocyte precursor proliferation. Supporting these observations, Bmi1(-/-) neurospheres generate preferentially astrocytes probably attributable to a different responsiveness to environmental factors. Bmi1 is therefore necessary for NSC renewal in a cell-intrinsic mode, whereas the altered cell pattern of the Bmi1(-/-) brain shows that in vivo astrocyte precursors can proliferate in the absence of Bmi1.


Asunto(s)
Astrocitos/citología , Neuronas/fisiología , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Proteínas Proto-Oncogénicas/deficiencia , Proteínas Proto-Oncogénicas/genética , Proteínas Represoras/genética , Células Madre/citología , Animales , Animales Recién Nacidos , Secuencia de Bases , Núcleo Caudado/fisiología , Diferenciación Celular , División Celular , Corteza Cerebral/fisiología , Cartilla de ADN , Regulación del Desarrollo de la Expresión Génica , Tamización de Portadores Genéticos , Gliosis/genética , Etiquetado Corte-Fin in Situ , Ratones , Ratones Noqueados , Neuronas/citología , Complejo Represivo Polycomb 1 , Putamen , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
15.
Genes Dev ; 19(12): 1438-43, 2005 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-15964995

RESUMEN

The Polycomb group (PcG) gene Bmi1 promotes cell proliferation and stem cell self-renewal by repressing the Ink4a/Arf locus. We used a genetic approach to investigate whether Ink4a or Arf is more critical for relaying Bmi1 function in lymphoid cells, neural progenitors, and neural stem cells. We show that Arf is a general target of Bmi1, however particularly in neural stem cells, derepression of Ink4a contributes to Bmi1(-/-) phenotypes. Additionally, we demonstrate haploinsufficient effects for the Ink4a/Arf locus downstream of Bmi1 in vivo. This suggests differential, cell type-specific roles for Ink4a versus Arf in PcG-mediated (stem) cell cycle control.


Asunto(s)
Genes p16 , Células Madre Multipotentes/citología , Células Madre Multipotentes/metabolismo , Neuronas/citología , Neuronas/metabolismo , Proteínas Nucleares/deficiencia , Proteínas Proto-Oncogénicas/deficiencia , Proteína p14ARF Supresora de Tumor/genética , Animales , Diferenciación Celular , Proliferación Celular , Senescencia Celular , Cerebelo/citología , Inhibidor p16 de la Quinasa Dependiente de Ciclina/deficiencia , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Heterocigoto , Tejido Linfoide/citología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Nucleares/genética , Complejo Represivo Polycomb 1 , Proteínas Proto-Oncogénicas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteína p14ARF Supresora de Tumor/deficiencia , Proteína p14ARF Supresora de Tumor/metabolismo
16.
Nature ; 428(6980): 337-41, 2004 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-15029199

RESUMEN

Overexpression of the polycomb group gene Bmi1 promotes cell proliferation and induces leukaemia through repression of Cdkn2a (also known as ink4a/Arf) tumour suppressors. Conversely, loss of Bmi1 leads to haematological defects and severe progressive neurological abnormalities in which de-repression of the ink4a/Arf locus is critically implicated. Here, we show that Bmi1 is strongly expressed in proliferating cerebellar precursor cells in mice and humans. Using Bmi1-null mice we demonstrate a crucial role for Bmi1 in clonal expansion of granule cell precursors both in vivo and in vitro. Deregulated proliferation of these progenitor cells, by activation of the sonic hedgehog (Shh) pathway, leads to medulloblastoma development. We also demonstrate linked overexpression of BMI1 and patched (PTCH), suggestive of SHH pathway activation, in a substantial fraction of primary human medulloblastomas. Together with the rapid induction of Bmi1 expression on addition of Shh or on overexpression of the Shh target Gli1 in cerebellar granule cell cultures, these findings implicate BMI1 overexpression as an alternative or additive mechanism in the pathogenesis of medulloblastomas, and highlight a role for Bmi1-containing polycomb complexes in proliferation of cerebellar precursor cells.


Asunto(s)
Cerebelo/embriología , Cerebelo/metabolismo , Regulación Neoplásica de la Expresión Génica , Meduloblastoma/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Represoras , Animales , División Celular , Cerebelo/citología , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog , Humanos , Péptidos y Proteínas de Señalización Intracelular , Meduloblastoma/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Proteínas Nucleares/genética , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/metabolismo , Receptores Patched , Receptor Patched-1 , Fenotipo , Complejo Represivo Polycomb 1 , Proteínas Proto-Oncogénicas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Superficie Celular , Transducción de Señal , Células Madre/citología , Células Madre/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína con Dedos de Zinc GLI1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...