Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros










Intervalo de año de publicación
1.
Vet World ; 17(4): 848-862, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38798284

RESUMEN

Background and Aim: Keratitis is a serious ocular infection often caused by pathogenic microorganisms such as Acanthamoeba spp. Among other harmful microbes, Acanthamoeba keratitis presents a particular challenge due to its resistance to conventional antimicrobial agents. Piper betle Linn., commonly known as betel leaf, has been traditionally used for its medicinal properties. This study aimed to assess the potential of the leaf ethanol extract of P. betle Linn. in the treatment of Acanthamoeba triangularis in monoculture and co-culture with two prevalent pathogenic bacteria, Staphylococcus aureus and Pseudomonas aeruginosa, associated with keratitis. Materials and Methods: Minimum inhibitory concentrations (MICs) of A. triangularis, S. aureus, and P. aeruginosa extracts in monoculture and coinfected conditions were examined. In addition, this study explored the potential of the extract in preventing Acanthamoeba adherence in both monoculture and co-culture environments. Scanning electron microscopy (SEM) analysis confirmed the impact of the extract on Acanthamoeba cell membranes, including acanthopodia. Furthermore, a time-kill kinetic assay was used to validate the amoebicidal activity of the extract against A. triangularis and the tested bacteria. Results: MICs for trophozoites, cysts, P. aeruginosa, and S. aureus in the monoculture were 0.25, 0.25, 0.51, and 0.128 mg/mL, respectively, whereas the MICs for Acanthamoeba coinfected with bacteria were higher than those in the monoculture. This extract inhibited the growth of A. triangularis trophozoites and cysts for up to 72 h. Moreover, P. betle extract effectively prevented the adherence of Acanthamoeba to contact lenses under monoculture conditions. SEM analysis confirmed that P. betle extract affects the cell membrane of Acanthamoeba, including Acanthopodia. In addition, the time-kill kinetic assay confirmed that the extract contained amoebicidal activity against A. triangularis, including the tested bacteria. Notably, S. aureus was more susceptible than A. triangularis and P. aeruginosa to P. betle extract treatment. Unexpectedly, our study revealed that S. aureus negatively affected A. triangularis in the co-culture after 3 days of incubation, whereas P. aeruginosa facilitated the growth of A. triangularis in the presence of the extract. Conclusion: This study provides compelling evidence of the anti-adhesive and anti-Acanthamoeba properties of P. betle leaf extract against A. triangularis under monoculture and co-culture conditions. The observed impact on Acanthamoeba cell membranes, coupled with the time-kill kinetic assay results, underscores the potential of P. betle leaf extract as a promising agent for combating Acanthamoeba-related infections in humans and animals.

2.
PeerJ ; 12: e17339, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38756443

RESUMEN

Background: Alzheimer's disease (AD) is one of the multifaceted neurodegenerative diseases influenced by many genetic and epigenetic factors. Genetic factors are merely not responsible for developing AD in the whole population. The studies of genetic variants can provide significant insights into the molecular basis of Alzheimer's disease. Our research aimed to show how genetic variants interact with environmental influences in different parts of the world. Methodology: We searched PubMed and Google Scholar for articles exploring the relationship between genetic variations and global regions such as America, Europe, and Asia. We aimed to identify common genetic variations susceptible to AD and have no significant heterogeneity. To achieve this, we analyzed 35 single-nucleotide polymorphisms (SNPs) from 17 genes (ABCA7, APOE, BIN1, CD2AP, CD33, CLU, CR1, EPHA1, TOMM40, MS4A6A, ARID5B, SORL1, APOC1, MTHFD1L, BDNF, TFAM, and PICALM) from different regions based on previous genomic studies of AD. It has been reported that rs3865444, CD33, is the most common polymorphism in the American and European populations. From TOMM40 and APOE rs2075650, rs429358, and rs6656401, CR1 is the common investigational polymorphism in the Asian population. Conclusion: The results of all the research conducted on AD have consistently shown a correlation between genetic variations and the incidence of AD in the populations of each region. This review is expected to be of immense value in future genetic research and precision medicine on AD, as it provides a comprehensive understanding of the genetic factors contributing to the development of this debilitating disease.


Asunto(s)
Enfermedad de Alzheimer , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/epidemiología , Humanos , Europa (Continente)/epidemiología , Asia/epidemiología , Estados Unidos/epidemiología , Variación Genética/genética
3.
Front Nutr ; 11: 1354987, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38562484
4.
Radiat Res ; 201(2): 115-125, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38211765

RESUMEN

The effects of long-term low-dose X-ray irradiation on the outer root sheath (ORS) cells of C3H/He mice were investigated. Mice were irradiated with a regime of 100 mGy/day, 5 days/week, for 12 weeks (Group X) and the results obtained were compared to those in a non-irradiated control (Group C). Potential protection against ORS cells damage induced by this exposure was investigated by adding the stable nitroxide radical 4-hydroxyl-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL) at 1 mM to the drinking water of mice (Group X + TEMPOL). The results obtained were compared with Group C and a non-irradiated group treated with TEMPOL (Group C + TEMPOL). After fractionated X-ray irradiation, skin was removed and ORS cells were examined by hematoxylin and eosin staining and electron microscopy for an abnormal nuclear morphology and nuclear condensation changes. Fractionated X-irradiated mice had an increased number of ORS cells with an abnormal nuclear morphology as well as nuclear condensation changes. Sections were also immunohistochemically examined for the presence of TdT-mediated dUTP nick-end labeling (TUNEL), 8-hydroxy-2'-deoxyguanosine (8-OHdG), 4-hydroxynonenal (4-HNE), vascular endothelial growth factor (VEGF), nitrotyrosine, heme oxygenase 1 (HO-1), and protein gene product 9.5 (PGP 9.5). Significant increases were observed in TUNEL, 8-OHdG, and 4-HNE levels in ORS cells from mice in Group X. Electron microscopy also showed irregular shrunken ORS cells in Group X. These changes were prevented by the presence of TEMPOL in the drinking water of the irradiated mice. TEMPOL alone had no significant effects. These results suggest that fractionated doses of radiation induced oxidative damage in ORS cells; however, TEMPOL provided protection against this damage, possibly as a result of the rapid reaction of this nitroxide radical with the reactive oxidants generated by fractionated X-ray irradiation.


Asunto(s)
Agua Potable , Óxidos de Nitrógeno , Marcadores de Spin , Animales , Ratones , Rayos X , Folículo Piloso , Factor A de Crecimiento Endotelial Vascular , Ratones Endogámicos C3H , Óxidos N-Cíclicos/farmacología , Óxidos N-Cíclicos/uso terapéutico
5.
Biomolecules ; 14(1)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38275757

RESUMEN

Questions about which reactive oxygen species (ROS) or reactive nitrogen species (RNS) can escape from the mitochondria and activate signals must be addressed. In this study, two parameters, the calculated dipole moment (debye, D) and permeability coefficient (Pm) (cm s-1), are listed for hydrogen peroxide (H2O2), hydroxyl radical (•OH), superoxide (O2•-), hydroperoxyl radical (HO2•), nitric oxide (•NO), nitrogen dioxide (•NO2), peroxynitrite (ONOO-), and peroxynitrous acid (ONOOH) in comparison to those for water (H2O). O2•- is generated from the mitochondrial electron transport chain (ETC), and several other ROS and RNS can be generated subsequently. The candidates which pass through the mitochondrial membrane include ROS with a small number of dipoles, i.e., H2O2, HO2•, ONOOH, •OH, and •NO. The results show that the dipole moment of •NO2 is 0.35 D, indicating permeability; however, •NO2 can be eliminated quickly. The dipole moments of •OH (1.67 D) and ONOOH (1.77 D) indicate that they might be permeable. This study also suggests that the mitochondria play a central role in protecting against further oxidative stress in cells. The amounts, the long half-life, the diffusion distance, the Pm, the one-electron reduction potential, the pKa, and the rate constants for the reaction with ascorbate and glutathione are listed for various ROS/RNS, •OH, singlet oxygen (1O2), H2O2, O2•-, HO2•, •NO, •NO2, ONOO-, and ONOOH, and compared with those for H2O and oxygen (O2). Molecules with negative electrical charges cannot directly diffuse through the phospholipid bilayer of the mitochondrial membranes. Short-lived molecules, such as •OH, would be difficult to contribute to intracellular signaling. Finally, HO2• and ONOOH were selected as candidates for the ROS/RNS that pass through the mitochondrial membrane.


Asunto(s)
Peróxido de Hidrógeno , Dióxido de Nitrógeno , Especies Reactivas de Oxígeno , Peróxido de Hidrógeno/farmacología , Citosol , Estrés Oxidativo , Óxido Nítrico , Ácido Peroxinitroso , Oxígeno , Mitocondrias
6.
Molecules ; 28(21)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37959790

RESUMEN

Kratom (Mitragyna speciosa Korth. Havil) has been considered a narcotic drug for years, barred by the law in many parts of the world, while extensive research over the past few decades proves its several beneficial effects, some of which are still in ambiguity. In many countries, including Thailand, the indiscriminate use and abuse of kratom have led to the loss of life. Nonetheless, researchers have isolated almost fifty pure compounds from kratom, most of which are alkaloids. The most prevalent compounds, mitragynine and 7-hydroxy mitragynine, are reported to display agonist morphine-like effects on human µ-opioid receptors and antagonists at κ- and δ-opioid receptors with multimodal effects at other central receptors. Mitragynine is also credited to be one of the modulatory molecules for the Keap1-Nrf2 pathway and SOD, CAT, GST, and associated genes' upregulatory cascades, leading it to play a pivotal role in neuroprotective actions while evidently causing neuronal disorders at high doses. Additionally, its anti-inflammatory, antioxidative, antibacterial, and gastroprotective effects are well-cited. In this context, this review focuses on the research gap to resolve ambiguities about the neuronal effects of kratom and demonstrate its prospects as a therapeutic target for neurological disorders associated with other pharmacological effects.


Asunto(s)
Mitragyna , Alcaloides de Triptamina Secologanina , Humanos , Proteína 1 Asociada A ECH Tipo Kelch , Factor 2 Relacionado con NF-E2 , Morfina , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Receptores Opioides mu , Alcaloides de Triptamina Secologanina/farmacología
7.
BMC Cancer ; 23(1): 1003, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37858101

RESUMEN

BACKGROUND: N-myc downstream-regulated gene-1 (NDRG1) is well-described as a potent metastasis suppressor, but its role in human breast cancer remains controversial and unclear. Therefore, the present study utilized a systematic review and meta-analysis approach to synthesize the association between NDRG1 protein expression and the aggressive characteristics of breast cancer. METHODS: The protocol for the systematic review and meta-analysis was registered on the PROSPERO website (CRD42023414814). Relevant articles were searched for in PubMed, Scopus, Embase, MEDLINE, and Ovid between March 30, 2023, and May 5, 2023. The included studies were critically evaluated using the Joanna Briggs Institute critical appraisal tools. The results from individual studies were qualitatively synthesized using textual narrative synthesis. Using a random-effects model, the pooled log odds ratio of effect estimate was used to look at the link between NDRG1 protein expression and aggressive features of breast cancer, such as tumor grade, tumor stage, metastasis to the axillary lymph nodes, and hormonal receptor status. RESULTS: A total of 1423 articles were retrieved from the electronic database search, and six studies that met the eligibility criteria were included for synthesis. There was an association between the expression of NDRG1 protein and the status of the axillary lymph nodes (P = 0.01, log Odds Ratio (OR): 0.59, 95% Confidence Interval (CI): 0.13-1.05, I2: 24.24%, 292 breast cancer cases with positive axillary lymph nodes and 229 breast cancer cases with negative axillary lymph nodes, 4 studies). NDRG1 protein expression and human epidermal growth factor receptor 2 (Her2) status were found to have a negative relationship (P = 0.01, log OR: -0.76, 95% CI: -1.32-(-0.20), I2: 32.42%, 197 breast cancer cases with Her2 positive and 272 breast cancer cases with Her2 negative, 3 studies). No correlation was found between NDRG1 protein expression and tumor grade (P = 0.10), estrogen receptor (ER) status (P = 0.57), or progesterone receptor (PR) status (P = 0.41). CONCLUSION: The study concluded that increased NDRG1 protein expression was associated with increased metastasis of the tumor to the axillary lymph node. Additionally, increased NDRG1 protein expression was observed in Her2-negative breast cancer, suggesting its role in both less aggressive and more aggressive behavior depending on breast cancer subtypes. Based on the findings of the meta-analysis, an increase in NDRG1 protein expression was associated with aggressive characteristics of breast cancer.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Axila/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proteínas de Ciclo Celular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Ganglios Linfáticos/patología , Receptor ErbB-2/metabolismo , Receptores de Progesterona/metabolismo
8.
Sci Rep ; 13(1): 16483, 2023 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-37777547

RESUMEN

Reduced glutathione (GSH) is a crucial antioxidant with recognized roles in malaria pathogenesis and host response. Despite its importance, reports on the association of GSH with malaria are inconsistent. Therefore, this systematic review and meta-analysis investigated the differences in GSH levels in relation to Plasmodium infection. A comprehensive literature search of six electronic databases (Embase, MEDLINE, Ovid, PubMed, Scopus, and ProQuest) was conducted. Of the 2158 initially identified records, 18 met the eligibility criteria. The majority of studies reported a significant decrease in GSH levels in malaria patients compared with uninfected controls, and this was confirmed by meta-analysis (P < 0.01, Hedges g: - 1.47, 95% confidence interval [CI] - 2.48 to - 0.46, I2: 99.12%, 17 studies). Additionally, there was no significant difference in GSH levels between Plasmodium falciparum malaria and P. vivax malaria (P = 0.80, Hedges g: 0.11, 95% CI - 0.76 to 0.98, I2: 93.23%, three studies). Similarly, no significant variation was observed between symptomatic and asymptomatic malaria cases (P = 0.78, Hedges g: 0.06, 95% CI - 0.34 to 0.46, I2: 48.07%, two studies). In conclusion, although GSH levels appear to be generally lower in malaria patients, further detailed studies are necessary to fully elucidate this complex relationship.


Asunto(s)
Malaria Falciparum , Malaria Vivax , Malaria , Humanos , Malaria Vivax/complicaciones , Plasmodium falciparum , Glutatión , Plasmodium vivax , Malaria Falciparum/complicaciones , Malaria/complicaciones
9.
J Zhejiang Univ Sci B ; 24(7): 574-586, 2023 Jul 15.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-37455135

RESUMEN

Wax apple (Syzygium samarangense) has received growing research interest for its high nutritional and medicinal value due to its constituents such as polysaccharide, organic acids, flavonoids, minerals, and other substances. In this study, wax apple polysaccharide (WAP) was isolated from this plant and its protective effect against ethyl carbamate (EC)|-induced oxidative damage was evaluated in human hepatocytes (L02 cells). Firstly, a series of analyses such as high-performance liquid chromatography (HPLC), high-performance gel permeation chromatography (HPGPC), Fourier transform infrared spectroscopy (FT-IR), gas chromatography/mass spectrometry (GC/MS), and 1H and 13C nuclear magnetic resonance (NMR) were conducted to identify the structure of WAP. Thereafter, in vitro cell experiments were performed to verify the protective effects of WAP against EC-induced cytotoxicity, genotoxicity, and oxidative damage in L02 cells. Our results revealed that WAP is composed of mannose, rhamnose, glucuronic acid, galacturonic acid, glucose, galactose, arabinose, and fucose in a molar ratio of 2.20:|3.94:|4.45:|8.56:|8.86:|30.82:|39.78:|1.48. Using a combination of methylation and NMR spectroscopic analysis, the primary structure of WAP was identified as Araf-(1→, Glcp-(1→, →2)|-Araf-(1→, →3)|-Galp-(1→, →3)|-Araf-|(1→, and →6)|-Galp-|(1→. Cell experiments indicated that WAP exhibited significant protective effects on EC-treated L02 cells via suppressing cytotoxicity and genotoxicity, reducing reactive oxygen species (ROS) and O2•- formation, as well as improving mitochondrial membrane potential (MMP) and glutathione (GSH). In a nutshell, WAP has the potential as an important therapeutic agent or supplement for hepatic oxidative damage. Meanwhile, further studies are needed to prove the above effects in vivo at the biological and clinical levels.


Asunto(s)
Syzygium , Humanos , Syzygium/química , Uretano/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Estrés Oxidativo , Glutatión/farmacología , Hepatocitos , Polisacáridos/farmacología
11.
PeerJ ; 11: e15463, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37273533

RESUMEN

Police officers in Thailand have an increased risk of heart disease, stroke, and type 2 diabetes, possibly due to a high prevalence of hypertension and metabolic syndrome (MetS). In this study, the researchers aimed to understand the relationship between surrogate markers of insulin resistance (IR) and the prevalence of MetS and hypertension in Thai police officers. The study included 7,852 police officer participants, of which 91.8% were men with an average age of 48.56 years. The prevalence of hypertension and MetS were found to be 51.1% and 30.8%, respectively, and the participants with MetS and hypertension were older compared to the regular group. The study looked at eight IR indices, including markers such as atherogenic index of plasma (AIP), lipid accumulation product (LAP), metabolic score for insulin resistance (METS-IR), triglyceride glucose (TyG) index, TyG index with body mass index (TyG-BMI), TyG index with waist circumference (TyG-WC), the ratio of triglycerides to high-density lipoprotein cholesterol ratio (TG/HDL-c), and visceral obesity index (VAI). These indices were found to be positively correlated with waist circumference, systolic blood pressure (SBP), diastolic blood pressure (DBP), fasting plasma glucose (FPG), and triglycerides (TG), while being negatively correlated with high-density lipoprotein cholesterol (HDL-c). In addition, the multiple regression analysis showed that higher quartiles of all IR indices were significantly associated with increased risks of MetS and hypertension. Interestingly, the IR indices were more accurate in predicting MetS (ranges 0.848 to 0.892) than traditional obesity indices, with the AUC difference at p < 0.001. Among the IR indices, TyG-WC performed the best in predicting MetS (AUC value 0.892 and Youden index 0.620). At the same time, TyG-BMI had the highest accuracy in predicting hypertension (AUC value of 0.659 and Youden index of 0.236). In addition, this study found that when two markers were combined for diagnosing metabolic syndrome, a significantly improved predictive value for disease risk was observed, as evidenced by higher AUC and Yoden index. Moreover, the IR indices were found to have higher predictive power for MetS and hypertension in younger police personnel (age < 48 years) than older personnel. In conclusion, this study highlights the importance of reducing cardiovascular disease risks among law enforcement personnel as a strategic goal to improve their health and wellness. The findings suggest that IR indices may be valuable tools in predicting MetS and hypertension in law enforcement personnel and could potentially aid in the early identification and prevention of law enforcement personnel health conditions.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hipertensión , Resistencia a la Insulina , Síndrome Metabólico , Masculino , Humanos , Persona de Mediana Edad , Femenino , Síndrome Metabólico/diagnóstico , Policia , Pueblos del Sudeste Asiático , Tailandia/epidemiología , Adiposidad , Glucemia/metabolismo , Hipertensión/diagnóstico , Glucosa , Triglicéridos , Lipoproteínas HDL/metabolismo , Colesterol
12.
Heliyon ; 9(5): e16137, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37251822

RESUMEN

Plant-based nanoformulation is one of the novel approaches for therapeutic benefits. This research synthesized a silver nanoparticle from the polyherbal combination of four plants/seeds (Momordica charantia, Trigonella foenum-graecum, Nigella sativa, and Ocimum sanctum) and investigated its antidiabetic effects in streptozotocin-induced Wistar albino rat model. The polyherbal extract (PH) was extracted by the Soxhlet-solvent extraction method and the resulting crude extract was undergone for silver nanoparticle synthesis. The PH extract was subjected to a four-week intervention in fructose-fed streptozotocin-induced Wistar Albino rats' models and in vitro antioxidative tests. Experimental animals (age: 6-7 weeks, male, body weight: 200-220 g), were divided into five groups including normal control (NC), reference control (RC), diabetic control (DC), and treatment groups PH200, PH100, and PHAgNP20. After three weeks of intervention, body weight, weekly blood glucose level, oral glucose tolerance test, AST, ALT, alkaline phosphatase, total cholesterol, triglycerides, uric acid, urea, and creatinine level of PH200 were found to be significantly (P < 0.05) improved compared to the diabetic control. The same dose demonstrated better regeneration of damaged pancreatic and kidney tissues. In vitro antioxidant assay manifested promising IC50 values of 86.17 µg/mL for DPPH, 711.04 µg/mL for superoxide free radical, and 0.48 mg/mL for Iron chelating activity of the polyherbal extract. GC-MS analysis impacted the major volatile compounds of the PH. The data demonstrate that the PH and its nanoparticles could be a novel source of antidiabetic therapeutics through an advanced dose-response study in the type 2 diabetic model.

14.
Biomolecules ; 13(3)2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36979380

RESUMEN

It has been known that reactive oxygen species (ROS) are generated from the mitochondrial electron transport chain (ETC). Majima et al. proved that mitochondrial ROS (mtROS) caused apoptosis for the first time in 1998 (Majima et al. J Biol Chem, 1998). It is speculated that mtROS can move out of the mitochondria and initiate cellular signals in the nucleus. This paper aims to prove this phenomenon by assessing the change in the amount of manganese superoxide dismutase (MnSOD) by MnSOD transfection. Two cell lines of the same genetic background, of which generation of mtROS are different, i.e., the mtROS are more produced in RGK1, than in that of RGM1, were compared to analyze the cellular signals. The results of immunocytochemistry staining showed increase of Nrf2, Keap1, HO-1 and 2, MnSOD, GCL, GST, NQO1, GATA1, GATA3, GATA4, and GATA5 in RGK1 compared to those in RGM1. Transfection of human MnSOD in RGK1 cells showed a decrease of those signal proteins, suggesting mtROS play a role in cellular signals in nucleus.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Transducción de Señal , Humanos , Especies Reactivas de Oxígeno/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Apoptosis
15.
Mitochondrion ; 70: 1-7, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36841519

RESUMEN

We designed a method to examine the mutation frequencies of the A3243G mutation of mitochondrial DNA (mtDNA) in patients with mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome. We performed a qPCR assay using the FAM and VIC TaqMan probes, which detect the 3243G (mutated) and 3243A (wild-type) sequences of mtDNA, respectively. The results obtained by "degree" in a series of differential mutation frequencies were used to plot a standard curve of the mutation frequency. The standard curve was then applied for qPCR assays of the desired samples. The standard deviation (%) of the samples calculated using the standard curve for the TaqMan probe was 2.4 ± 1.5%. This method could be used to examine mutation frequencies in the context of diabetes, aging, cancer, and neurodegenerative diseases.


Asunto(s)
Síndrome MELAS , Accidente Cerebrovascular , Humanos , Tasa de Mutación , Síndrome MELAS/genética , Mutación , ADN Mitocondrial/genética
16.
J Ethnopharmacol ; 308: 116189, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-36791925

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Diarrhea is one of the leading causes of preventable death in developing countries, mainly caused by bacterial infections and traditional therapies are very common in diarrheal incidences. Meda Pata (Litsea glutionsa) has a long history of use as traditional medicine for diarrhea, dysentery, and spasm in Bangladesh, India, and some other Asian countries. AIM OF THE STUDY: This research reports the antidiarrheal effects of Meda Pata (Litsea glutinosa leaf extract, LGLEx) in animal models. The work has been supported by in silico molecular docking study to verify the effects. MATERIALS AND METHODS: The antidiarrheal effect of LGLEx was investigated in castor oil-induced diarrhea, magnesium sulfate-induced diarrhea, and gastrointestinal motility test models. Antidiarrheal effects were supported by a molecular docking study through an interaction between LGLEx's GC-MS analyzed imidazole-containing compounds and muscarinic acetylcholine receptor (PDB: 4U14) and 5-HT3 receptor (PDB: 5AIN). RESULTS: LGLEx potentially reduced the diarrheal incidences in in vivo assays reducing gastrointestinal motility. The maximum diarrheal inhibition was obtained in the castor oil-induced model (62.63%) and and BaSO4-induced model (73.14%), which were statistically significant (P < 0.05) when compared to the reference drug loperamide. In the castor-oil and BaSO4-induced models, peristaltic movement was reduced by 25.96% and 32.17%, respectively. Biochemical markers particularly IgE, C-reactive proteins, and serum electrolytes were significantly (P < 0.0) restored in treated groups. A Molecular docking analysis revealed that two compounds (1-Ethyl-2-hydroxymethylimidazole and 1,6-Anhydro-beta-D-glucofuranose demonstrated the highest binding affinity with target receptors muscarinic acetylcholine receptor (PDB: 4U14) and 5-HT3 receptor (PDB: 5AIN) confirming their drug likeliness. The findings indicate a high potential antidiarrheal impact that warrants further investigation for its therapeutic application.


Asunto(s)
Antidiarreicos , Litsea , Animales , Ratas , Antidiarreicos/farmacología , Aceite de Ricino , Simulación del Acoplamiento Molecular , Receptores de Serotonina 5-HT3 , Extractos Vegetales/farmacología , Diarrea/tratamiento farmacológico
17.
Biomater Adv ; 146: 213291, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36709628

RESUMEN

The phytochemicals of Tamarindus indica seed hydroalcoholic extract were exploited as a biocatalyst for the sustainable synthesis of magnesium oxide nanoparticles (MgO-NPs). This research investigated the cardioprotective effects of biosynthesized magnesium oxide nanoparticle (MgO-NPs). The biosynthesized seed MgO-NPs were characterized by ultraviolet-visible spectroscopy (UV-Vis), X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy-dispersive X-ray diffraction (EDX), and Fourier-transform infrared spectroscopy (FT-IR). These methodological approaches demonstrated their capacity to synthesize crystalline and aggregated MgO-NPs with a size average of 13.38 ± 0.16 nm. The biogenic MgO-NPs were found to have a significant quantity of total phenolic contents (TPC) and total flavonoid contents (TFC), indicating the existence of phenol and flavonoid-like components. The biogenic MgO-NPs demonstrated a significant free radical scavenging effects compared to different standards as measured by the inhibition of free radicals produced in 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS•+), and Nitric oxide (NO) scavenging methods; they also exhibited higher ferric ion reducing capacity in FRAP assay. Moreover, they were found to be non-toxic in cytotoxic assessment. Pretreatment of Wistar Albino rats with seed MgO-NPs resulted in a significant reduction of cardiac biomarkers, i.e., cardiac Troponin-I (cTnI), creatine kinase (CK-MB), and aspartate aminotransferase (AST). The seed MgO-NPs were more successful in reducing lipid levels. The results of the mRNA expression analysis showed that seed MgO-NPs efficiently reduced the expression of the apoptotic genes p53 and Caspase-3 while restoring the expected levels of SOD gene expression. The histopathological observations were primarily focused on the disruption of cardiac fibers and myofibrillar disintegration, which are consistent with the biochemical findings. Therefore, our research suggests that MgO-NPs derived from the seeds of Tamarindus indica as a powerful antioxidant; the administration may be effective in protecting the heart from DOX-induced cardiotoxicity.


Asunto(s)
Nanopartículas del Metal , Tamarindus , Cardiotoxicidad/prevención & control , Doxorrubicina , Óxido de Magnesio/farmacología , Óxido de Magnesio/química , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/química , Semillas , Espectroscopía Infrarroja por Transformada de Fourier , Ratas , Animales
18.
Front Immunol ; 14: 1275001, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38187378

RESUMEN

Significance: This review discusses the coronavirus disease 2019 (COVID-19) pathophysiology in the context of diabetes and intracellular reactions by COVID-19, including mitochondrial oxidative stress storms, mitochondrial ROS storms, and long COVID. Recent advances: The long COVID is suffered in ~10% of the COVID-19 patients. Even the virus does not exist, the patients suffer the long COVID for even over a year, This disease could be a mitochondria dysregulation disease. Critical issues: Patients who recover from COVID-19 can develop new or persistent symptoms of multi-organ complications lasting weeks or months, called long COVID. The underlying mechanisms involved in the long COVID is still unclear. Once the symptoms of long COVID persist, they cause significant damage, leading to numerous, persistent symptoms. Future directions: A comprehensive map of the stages and pathogenetic mechanisms related to long COVID and effective drugs to treat and prevent it are required, which will aid the development of future long COVID treatments and symptom relief.


Asunto(s)
COVID-19 , Síndrome Post Agudo de COVID-19 , Humanos , Especies Reactivas de Oxígeno , Mitocondrias , Estrés Oxidativo
19.
Heliyon ; 8(12): e12032, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36506386

RESUMEN

Most modern wound dressings assist the wound-healing process. In contrast, conventional wound dressings have limited antibacterial activity and promote sporadic fibroblast growth. Therefore, wound dressings with prolonged substance release must be improved. This research aimed to develop hydrogel films. These were synthesized from alginate and pectin, incorporated with mangosteen extract (ME), and encapsulated in niosomes (ME-loaded niosomes). Subsequently, we examined the in vitro release and physical characteristics of ME-loaded niosomes. These characteristics included particle pH, size, charge, polydispersity index (PDI), and drug loading properties. These properties included drug loading content (DLC), entrapment efficiency (EE), and yield (Y). Additionally, we examined the swelling ratio and biological characteristics of the hydrogel film. These characteristics included antibacterial activity, cytotoxicity (L929), cell attachment to the tested materials, cell migration, hemocompatibility, and in vivo irritation. Significant results were obtained using a 2:1 niosome preparation containing Span60 and cholesterol. Ratio influenced size, charge, PDI, DLC, EE, and Y. The results were 225.5 ± 5.83 nm, negatively charged, 0.38, 16.2 ± 0.87%, 64.8 ± 3.49%, and 87.3 ± 3.09%, respectively. Additionally, the release of encapsulated ME was pH sensitive because 85% of the ME can be released at a pH of 5.5 within seven days and decrease to 70% at a pH of 7.4. The maximum swelling ratios of patches with 0.5% and 1% Ca2+ crosslinking were 867 wt% and 1,025 wt%, respectively, after 30 min. These results suggested that a medium dose (15 mg) of niosomal ME incorporated in a hydrogel film provided better bacterial inhibition, cell migration, and cell adhesion in an in vitro model. Additionally, no toxicity was observed in the fibroblasts and red blood cells. Therefore, given the above-mentioned advantages, this product can be a promising candidate for wound dressing applications.

20.
Antioxidants (Basel) ; 11(12)2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36552606

RESUMEN

Plants are an entity essential to the function of the biosphere as well as human health. In the context of human health, this research investigated the effect of Lasia spinosa (Lour) leaf methanolic extracts (LSML) on antioxidative enzymes and gene expression as well as biochemical and histological markers in a streptozotocin (STZ)-induced diabetes model. Fructose-fed streptozotocin (STZ)-induced diabetic animals were subjected to a four-week intervention followed by the assessment of the animal's blood and tissues for enzymatic, biochemical, histological, and genetic changes. LSML-treated groups were shown to decrease plasma glucose levels and improve body and organ weights compared to the untreated group in a dose-dependent manner. At the doses of 125 and 250 mg/kg b.w., LSML were able to normalize serum, hepatic, and renal biochemical parameters and restore the pancreas, kidney, liver, and spleen tissue architectures to their native state. A considerable increase (p < 0.01) of liver antioxidant enzymes CAT, SOD, GSH, and a decrease of MDA level in LSML-treated groups were found at higher doses. The improved mRNA expression level of antioxidant genes CAT, SOD2, PON1, and PFK1 was also found at the doses of 125 mg/kg and 250 mg/kg BW when compared to untreated control groups. The results demonstrate that LSML impacts the upregulation of antioxidative gene expressions, thus improving the diabetic complications in animal models which need to be affirmed by compound-based antioxidative actions for therapeutic development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...