Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Sci Rep ; 13(1): 16498, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37779126

RESUMEN

SARS-CoV-2 subunit vaccines continue to be the focus of intense clinical development worldwide. Protein antigens in these vaccines most commonly consist of the spike ectodomain fused to a heterologous trimerization sequence, designed to mimic the compact, prefusion conformation of the spike on the virus surface. Since 2020, we have produced dozens of such constructs in CHO cells, consisting of spike variants with different mutations fused to different trimerization sequences. This set of constructs displayed notable conformational heterogeneity, with two distinct trimer species consistently detected by analytical size exclusion chromatography. A recent report showed that spike ectodomain fusion constructs can adopt an alternative trimer conformation consisting of loosely associated ectodomain protomers. Here, we applied multiple biophysical and immunological techniques to demonstrate that this alternative conformation is formed to a significant extent by several SARS-CoV-2 variant spike proteins. We have also examined the influence of temperature and pH, which can induce inter-conversion of the two forms. The substantial structural differences between these trimer types may impact their performance as vaccine antigens.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Cricetinae , Humanos , Vacunas contra la COVID-19/genética , Temperatura , Cricetulus , Antígenos , Mutación , Concentración de Iones de Hidrógeno , Anticuerpos Neutralizantes
2.
J Biol Chem ; 299(11): 105278, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37742917

RESUMEN

Most immunoglobulin (Ig) domains bear only a single highly conserved canonical intradomain, inter-ß-sheet disulfide linkage formed between Cys23-Cys104, and incorporation of rare noncanonical disulfide linkages at other locations can enhance Ig domain stability. Here, we exhaustively surveyed the sequence tolerance of Ig variable (V) domain framework regions (FRs) to noncanonical disulfide linkages. Starting from a destabilized VH domain lacking a Cys23-Cys104 disulfide linkage, we generated and screened phage-displayed libraries of engineered VHs, bearing all possible pairwise combinations of Cys residues in neighboring ß-strands of the Ig fold FRs. This approach identified seven novel Cys pairs in VH FRs (Cys4-Cys25, Cys4-Cys118, Cys5-Cys120, Cys6-Cys119, Cys22-Cys88, Cys24-Cys86, and Cys45-Cys100; the international ImMunoGeneTics information system numbering), whose presence rescued domain folding and stability. Introduction of a subset of these noncanonical disulfide linkages (three intra-ß-sheet: Cys4-Cys25, Cys22-Cys88, and Cys24-Cys86, and one inter-ß-sheet: Cys6-Cys119) into a diverse panel of VH, VL, and VHH domains enhanced their thermostability and protease resistance without significantly impacting expression, solubility, or binding to cognate antigens. None of the noncanonical disulfide linkages identified were present in the natural human VH repertoire. These data reveal an unexpected permissiveness of Ig V domains to noncanonical disulfide linkages at diverse locations in FRs, absent in the human repertoire, whose presence is compatible with antigen recognition and improves domain stability. Our work represents the most complete assessment to date of the role of engineered noncanonical disulfide bonding within FRs in Ig V domain structure and function.


Asunto(s)
Región Variable de Inmunoglobulina , Humanos , Secuencia de Aminoácidos , Técnicas de Visualización de Superficie Celular , Región Variable de Inmunoglobulina/química , Región Variable de Inmunoglobulina/genética , Región Variable de Inmunoglobulina/metabolismo , Dominios Proteicos/genética , Escherichia coli/genética , Pliegue de Proteína
3.
Front Microbiol ; 14: 1167817, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37065148

RESUMEN

[This corrects the article DOI: 10.3389/fmicb.2023.1110541.].

4.
Front Microbiol ; 14: 1110541, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36778856

RESUMEN

Crystal structures of camelid heavy-chain antibody variable domains (VHHs) bound to fragments of the combined repetitive oligopeptides domain of Clostridiodes difficile toxin A (TcdA) reveal that the C-terminus of VHH A20 was located 30 Å away from the N-terminus of VHH A26. Based on this observation, we generated a biparatopic fusion protein with A20 at the N-terminus, followed by a (GS)6 linker and A26 at the C-terminus. This A20-A26 fusion protein shows an improvement in binding affinity and a dramatic increase in TcdA neutralization potency (>330-fold [IC 50]; ≥2,700-fold [IC 99]) when compared to the unfused A20 and A26 VHHs. A20-A26 also shows much higher binding affinity and neutralization potency when compared to a series of control antibody constructs that include fusions of two A20 VHHs, fusions of two A26 VHHs, a biparatopic fusion with A26 at the N-terminus and A20 at the C-terminus (A26-A20), and actoxumab. In particular, A20-A26 displays a 310-fold (IC 50) to 29,000-fold (IC 99) higher neutralization potency than A26-A20. Size-exclusion chromatography-multiangle light scattering (SEC-MALS) analyses further reveal that A20-A26 binds to TcdA with 1:1 stoichiometry and simultaneous engagement of both A20 and A26 epitopes as expected based on the biparatopic design inspired by the crystal structures of TcdA bound to A20 and A26. In contrast, the control constructs show varied and heterogeneous binding modes. These results highlight the importance of molecular geometric constraints in generating highly potent antibody-based reagents capable of exploiting the simultaneous binding of more than one paratope to an antigen.

5.
Commun Biol ; 5(1): 933, 2022 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-36085335

RESUMEN

Nanobodies offer several potential advantages over mAbs for the control of SARS-CoV-2. Their ability to access cryptic epitopes conserved across SARS-CoV-2 variants of concern (VoCs) and feasibility to engineer modular, multimeric designs, make these antibody fragments ideal candidates for developing broad-spectrum therapeutics against current and continually emerging SARS-CoV-2 VoCs. Here we describe a diverse collection of 37 anti-SARS-CoV-2 spike glycoprotein nanobodies extensively characterized as both monovalent and IgG Fc-fused bivalent modalities. The nanobodies were collectively shown to have high intrinsic affinity; high thermal, thermodynamic and aerosolization stability; broad subunit/domain specificity and cross-reactivity across existing VoCs; wide-ranging epitopic and mechanistic diversity and high and broad in vitro neutralization potencies. A select set of Fc-fused nanobodies showed high neutralization efficacies in hamster models of SARS-CoV-2 infection, reducing viral burden by up to six orders of magnitude to below detectable levels. In vivo protection was demonstrated with anti-RBD and previously unreported anti-NTD and anti-S2 nanobodies. This collection of nanobodies provides a potential therapeutic toolbox from which various cocktails or multi-paratopic formats could be built to combat multiple SARS-CoV-2 variants.


Asunto(s)
COVID-19 , Anticuerpos de Dominio Único , Animales , Anticuerpos Monoclonales , Cricetinae , Humanos , SARS-CoV-2/genética , Anticuerpos de Dominio Único/genética
6.
FEBS J ; 289(14): 4304-4327, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-33751827

RESUMEN

Single-domain antibodies (sdAbs), the autonomous variable domains of camelid and shark heavy-chain antibodies, have many desirable properties as components of biologic drugs. However, their sequences may increase the risk of immunogenicity and antidrug antibody (ADA) development in humans, and thus, sdAbs are routinely humanized during development. Here, we review and summarize the available evidence regarding the factors governing immunogenicity of sdAbs and our current state of knowledge of strategies to mitigate immunogenicity risks by humanization. While several sdAb properties, including high homology of camelid VH Hs with human IGHV3 gene products, favor low immunogenicity in humans, epitopes absent in the human repertoire including the exposed VH :VL interface may be intrinsically immunogenic. While most clinical trials have demonstrated minimal sdAb immunogenicity, two notable exceptions (the tetrameric DR5-specific VH H TAS266 and the TNFR1-specific VH GSK1995057) illustrate that special caution must be taken in identifying preexisting ADAs against highly potent sdAbs. Nonhuman sequence alone does not adequately explain sdAb immunogenicity, as some camelid VH Hs are nonimmunogenic while some fully human VH s elicit ADAs. The presence of preexisting ADAs directed against the exposed C-termini of some sdAbs in a significant proportion of individuals awaits a molecular explanation. Whether sdAb humanization reduces or promotes immunogenicity remains unclear: reduction of nonhuman sequence content at the expense of introducing low-level aggregation in humanized variants may be counterproductive. Further work will establish thresholds for VH H and VNAR humanization to maximize human sequence content while avoiding loss of binding affinity and/or immunogenicity resulting from aggregation or decreased stability.


Asunto(s)
Anticuerpos de Dominio Único , Anticuerpos , Epítopos , Humanos , Cadenas Pesadas de Inmunoglobulina/genética , Anticuerpos de Dominio Único/química
7.
Protein Eng Des Sel ; 342021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33991089

RESUMEN

Interest in single-domain antibodies (sdAbs) stems from their unique structural/pronounced, hence therapeutically desirable, features. From the outset-as therapeutic modalities-human antibody heavy chain variable domains (VHs) attracted a particular attention compared with 'naturally-occurring' camelid and shark heavy-chain-only antibody variable domains (VHHs and VNARs, respectively) due to their perceived lack of immunogenicity. However, they have not quite lived up to their initial promise as the VH hits, primarily mined from synthetic VH phage display libraries, have too often been plagued with aggregation tendencies, low solubility and low affinity. Largely unexplored, synthetic camelized human VH display libraries appeared to have remediated the aggregation problem, but the low affinity of the VH hits still persisted, requiring undertaking additional, laborious affinity maturation steps to render VHs therapeutically feasible. A wholesome resolution has recently emerged with the development of non-canonical transgenic rodent antibody discovery platforms that appear to facilely and profusely generate high affinity, high solubility and aggregation-resistant human VHs.


Asunto(s)
Cadenas Pesadas de Inmunoglobulina , Anticuerpos de Dominio Único , Anticuerpos/genética , Humanos , Cadenas Pesadas de Inmunoglobulina/genética , Anticuerpos de Dominio Único/genética
8.
Nat Commun ; 12(1): 55, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-33397901

RESUMEN

3D printing has enabled materials, geometries and functional properties to be combined in unique ways otherwise unattainable via traditional manufacturing techniques, yet its adoption as a mainstream manufacturing platform for functional objects is hindered by the physical challenges in printing multiple materials. Vat polymerization offers a polymer chemistry-based approach to generating smart objects, in which phase separation is used to control the spatial positioning of materials and thus at once, achieve desirable morphological and functional properties of final 3D printed objects. This study demonstrates how the spatial distribution of different material phases can be modulated by controlling the kinetics of gelation, cross-linking density and material diffusivity through the judicious selection of photoresin components. A continuum of morphologies, ranging from functional coatings, gradients and composites are generated, enabling the fabrication of 3D piezoresistive sensors, 5G antennas and antimicrobial objects and thus illustrating a promising way forward in the integration of dissimilar materials in 3D printing of smart or functional parts.

9.
FASEB J ; 34(6): 8155-8171, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32342547

RESUMEN

Prolonged serum half-life is required for the efficacy of most protein therapeutics. One strategy for half-life extension is to exploit the long circulating half-life of serum albumin by incorporating a binding moiety that recognizes albumin. Here, we describe camelid single-domain antibodies (VH Hs) that bind the serum albumins of multiple species with moderate to high affinity at both neutral and endosomal pH and significantly extend the serum half-lives of multiple proteins in rats from minutes to days. We serendipitously identified an additional VH H (M75) that is naturally pH-sensitive: at endosomal pH, binding affinity for human serum albumin (HSA) was dramatically weakened and binding to rat serum albumin (RSA) was undetectable. Domain mapping revealed that M75 bound to HSA domain 1 and 2. Moreover, alanine scanning of HSA His residues suggested a critical role for His247, located in HSA domain 2, in M75 binding and its pH dependence. Isothermal titration calorimetry experiments were suggestive of proton-linked binding of M75 to HSA, with differing binding enthalpies observed for full-length HSA and an HSA domain 1-domain 2 fusion protein in which surface-exposed His residues were substituted with Ala. M75 conferred moderate half-life extension in rats, from minutes to hours, likely due to rapid dissociation from RSA during FcRn-mediated endosomal recycling in tandem with albumin conformational changes induced by M75 binding that prevented interaction with FcRn. Humanized VH Hs maintained in vivo half-life extension capabilities. These VH Hs represent a new set of tools for extending protein therapeutic half-life and one (M75) demonstrates a unique pH-sensitive binding interaction that can be exploited to achieve modest in vivo half-life.


Asunto(s)
Productos Biológicos/metabolismo , Albúmina Sérica/metabolismo , Animales , Línea Celular , Endosomas/metabolismo , Células HEK293 , Semivida , Humanos , Concentración de Iones de Hidrógeno , Masculino , Unión Proteica/fisiología , Ratas , Ratas Wistar
10.
Antibodies (Basel) ; 8(2)2019 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-31544833

RESUMEN

Antibodies have become one of the most successful therapeutics for a number of oncology and inflammatory diseases. So far, central nervous system (CNS) indications have missed out on the antibody revolution, while they remain 'hidden' behind several hard to breach barriers. Among the various antibody modalities, single-domain antibodies (sdAbs) may hold the 'key' to unlocking the access of antibody therapies to CNS diseases. The unique structural features of sdAbs make them the smallest monomeric antibody fragments suitable for molecular targeting. These features are of particular importance when developing antibodies as modular building blocks for engineering CNS-targeting therapeutics and imaging agents. In this review, we first introduce the characteristic properties of sdAbs compared to traditional antibodies. We then present recent advances in the development of sdAbs as potential therapeutics across brain barriers, including their use for the delivery of biologics across the blood-brain and blood-cerebrospinal fluid (CSF) barriers, treatment of neurodegenerative diseases and molecular imaging of brain targets.

11.
Int J Mol Sci ; 20(9)2019 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-31035322

RESUMEN

Approximately one fifth of all malignancies worldwide are etiologically associated with a persistent viral or bacterial infection. Thus, there is a particular interest in therapeutic molecules which use components of a natural immune response to specifically inhibit oncogenic microbial proteins, as it is anticipated they will elicit fewer off-target effects than conventional treatments. This concept has been explored in the context of human papillomavirus 16 (HPV16)-related cancers, through the development of monoclonal antibodies and fragments thereof against the viral E6 oncoprotein. Challenges related to the biology of E6 as well as the functional properties of the antibodies themselves appear to have precluded their clinical translation. Here, we addressed these issues by exploring the utility of the variable domains of camelid heavy-chain-only antibodies (denoted as VHHs). Through construction and panning of two llama, immune VHH phage display libraries, a pool of potential VHHs was isolated. The interactions of these with recombinant E6 were further characterized using an enzyme-linked immunosorbent assay (ELISA), Western blotting under denaturing and native conditions, and surface plasmon resonance. Three VHHs were identified that bound recombinant E6 with nanomolar affinities. Our results lead the way for subsequent studies into the ability of these novel molecules to inhibit HPV16-infected cells in vitro and in vivo.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Papillomavirus Humano 16/inmunología , Proteínas Oncogénicas Virales/inmunología , Proteínas Represoras/inmunología , Ensayo de Inmunoadsorción Enzimática , Humanos , Biblioteca de Péptidos , Anticuerpos de Dominio Único/inmunología
12.
Protein Sci ; 28(5): 881-888, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30803088

RESUMEN

Incorporation of noncanonical disulfide linkages into single-domain antibodies (sdAbs) has been shown to enhance thermostability and other properties. Here, we evaluated the effects of introducing a novel disulfide linkage formed between Cys residues at IMGT positions 40 and 55 on the melting temperatures (T m s), reversibility of thermal unfolding, solubility, and antigen-binding affinities of three types of sdAbs (VH H, VH , and VL domains). The Cys40-Cys55 disulfide linkage was tolerated by 9/9 VH Hs, 12/12 VH s, and 2/11 VL s tested and its formation was confirmed by mass spectrometry. Using circular dichroism, we found that the Cys40-Cys55 disulfide linkage increased sdAb T m by an average of 10.0°C (range: 0-21.8°C). However, enhanced thermostability came at the cost of a partial loss of refolding ability upon thermal denaturation as well as, for some sdAbs, significantly decreased solubility and antigen-binding affinity. Thus, Cys40/Cys55 can be added to the panel of known locations for introducing stabilizing noncanonical disulfide linkages into antibody variable domains, although its effects should be tested empirically for individual sdAbs.


Asunto(s)
Cisteína/química , Disulfuros/química , Anticuerpos de Dominio Único/química , Humanos , Modelos Moleculares , Conformación Proteica , Dominios Proteicos , Ingeniería de Proteínas/métodos , Pliegue de Proteína , Estabilidad Proteica , Termodinámica
13.
Immunol Cell Biol ; 97(6): 526-537, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30680791

RESUMEN

Human IgG1 and IgG3 antibodies (Abs) can mediate Ab-dependent cellular cytotoxicity (ADCC), and engineering of the Ab Fc (point mutation; defucosylation) has been shown to affect ADCC by modulating affinity for FcRγIIIa. In the absence of a CH 1 domain, many camelid heavy-chain Abs (HCAbs) naturally bear very long and flexible hinge regions connecting their VH H and CH 2 domains. To better understand the influence of hinge length and structure on HCAb ADCC, we produced a series of hinge-engineered epidermal growth factor receptor (EGFR)-specific chimeric camelid VH H-human Fc Abs and characterized their affinities for recombinant EGFR and FcRγIIIa, their binding to EGFR-positive tumor cells, and their ability to elicit ADCC. In the case of one chimeric HCAb (EG2-hFc), we found that variants bearing longer hinges (IgG3 or camelid hinge regions) showed dramatically improved ADCC in comparison with a variant bearing the human IgG1 hinge, in similar fashion to a variant with reduced CH 2 fucosylation. Conversely, an EG2-hFc variant bearing a truncated human IgG1 upper hinge region failed to elicit ADCC. However, there was no consistent association between hinge length and ADCC for four similarly engineered chimeric HCAbs directed against distinct EGFR epitopes. These findings demonstrate that the ADCC of some HCAbs can be modulated simply by varying the length of the Ab hinge. Although this effect appears to be heavily epitope-dependent, this strategy may be useful to consider during the design of VH H-based therapeutic Abs for cancer.


Asunto(s)
Adenocarcinoma/terapia , Anticuerpos Monoclonales/metabolismo , Neoplasias de la Mama/terapia , Inmunoterapia/métodos , Proteínas Recombinantes de Fusión/genética , Adenocarcinoma/inmunología , Animales , Anticuerpos Monoclonales/genética , Afinidad de Anticuerpos , Citotoxicidad Celular Dependiente de Anticuerpos , Neoplasias de la Mama/inmunología , Camelidae , Línea Celular Tumoral , Receptores ErbB/inmunología , Receptores ErbB/metabolismo , Femenino , Humanos , Fragmentos Fc de Inmunoglobulinas/genética , Inmunoglobulina G/genética , Cadenas Pesadas de Inmunoglobulina/genética , Región Variable de Inmunoglobulina/genética , Mutación/genética , Unión Proteica , Ingeniería de Proteínas
14.
Biochem J ; 476(1): 39-50, 2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30455372

RESUMEN

Up-regulation of epidermal growth factor receptor (EGFR) is a hallmark of many solid tumors, and inhibition of EGFR signaling by small molecules and antibodies has clear clinical benefit. Here, we report the isolation and functional characterization of novel camelid single-domain antibodies (sdAbs or VHHs) directed against human EGFR. The source of these VHHs was a llama immunized with cDNA encoding human EGFR ectodomain alone (no protein or cell boost), which is notable in that genetic immunization of large, outbred animals is generally poorly effective. The VHHs targeted multiple sites on the receptor's surface with high affinity (KD range: 1-40 nM), including one epitope overlapping that of cetuximab, several epitopes conserved in the cynomolgus EGFR orthologue, and at least one epitope conserved in the mouse EGFR orthologue. Interestingly, despite their generation against human EGFR expressed from cDNA by llama cells in vivo (presumably in native conformation), the VHHs exhibited wide and epitope-dependent variation in their apparent affinities for native EGFR displayed on tumor cell lines. As fusions to human IgG1 Fc, one of the VHH-Fcs inhibited EGFR signaling induced by EGF binding with a potency similar to that of cetuximab (IC50: ∼30 nM). Thus, DNA immunization elicited high-affinity, functional sdAbs that were vastly superior to those previously isolated by our group through protein immunization.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Camélidos del Nuevo Mundo/inmunología , ADN/farmacología , Inmunización , Anticuerpos de Dominio Único/inmunología , Animales , Línea Celular Tumoral , ADN/inmunología , Receptores ErbB/genética , Receptores ErbB/inmunología , Células HEK293 , Humanos , Masculino
15.
PLoS One ; 13(12): e0208978, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30540857

RESUMEN

An increasing number of antibody-based therapies are being considered for controlling bacterial infections, including Clostridium difficile by targeting toxins A and B. In an effort to develop novel C. difficile immunotherapeutics, we previously isolated several single-domain antibodies (VHHs) capable of toxin A neutralization through recognition of the extreme C-terminal combined repetitive oligopeptides (CROPs) domain, but failed at identifying neutralizing VHHs that bound a similar region on toxin B. Here we report the isolation of a panel of 29 VHHs targeting at least seven unique epitopes on a toxin B immunogen composed of a portion of the central delivery domain and the entire CROPs domain. Despite monovalent affinities as high as KD = 70 pM, none of the VHHs tested were capable of toxin B neutralization; however, modest toxin B inhibition was observed with VHH-VHH dimers and to a much greater extent with VHH-Fc fusions, reaching the neutralizing potency of the recently approved anti-toxin B monoclonal antibody bezlotoxumab in in vitro assays. Epitope binning revealed that several VHH-Fcs bound toxin B at sites distinct from the region recognized by bezlotoxumab, while other VHH-Fcs partially competed with bezlotoxumab for toxin binding. Therefore, the VHHs described here are effective at toxin B neutralization when formatted as bivalent VHH-Fc fusions by targeting toxin B at regions both similar and distinct from the bezlotoxumab binding site.


Asunto(s)
Proteínas Bacterianas/inmunología , Toxinas Bacterianas/inmunología , Clostridioides difficile/metabolismo , Anticuerpos de Dominio Único/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Reacciones Antígeno-Anticuerpo , Sitios de Unión , Unión Competitiva , Anticuerpos ampliamente neutralizantes , Camélidos del Nuevo Mundo , Dimerización , Epítopos/inmunología , Humanos , Fragmentos Fc de Inmunoglobulinas/genética , Fragmentos Fc de Inmunoglobulinas/metabolismo , Pruebas de Neutralización , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/genética , Anticuerpos de Dominio Único/metabolismo
16.
J Immunol Methods ; 456: 81-86, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29462605

RESUMEN

Fully human synthetic single-domain antibodies (sdAbs) are desirable therapeutic molecules but their development is a considerable challenge. Here, using a retrospective analysis of in-house historical data, we examined the parameters that impact the outcome of screening phage-displayed synthetic human sdAb libraries to discover antigen-specific binders. We found no evidence for a differential effect of domain type (VH or VL), library randomization strategy, incorporation of a stabilizing disulfide linkage or sdAb display format (monovalent vs. multivalent) on the probability of obtaining any antigen-binding human sdAbs, instead finding that the success of library screens was primarily related to properties of target antigens, especially molecular mass. The solubility and binding affinity of sdAbs isolated from successful screens depended both on properties of the sdAb libraries (primarily domain type) and the target antigens. Taking attrition of sdAbs with major manufacturability concerns (aggregation; low expression) and sdAbs that do not recognize native cell-surface antigens as independent probabilities, we calculate the overall likelihood of obtaining ≥1 antigen-binding human sdAb from a single library-target screen as ~24%. Successful library-target screens should be expected to yield ~1.3 human sdAbs on average, each with average binding affinity of ~2 µM.


Asunto(s)
Antígenos/inmunología , Biblioteca de Péptidos , Anticuerpos de Dominio Único/inmunología , Reacciones Antígeno-Anticuerpo , Antígenos/genética , Humanos , Estudios Retrospectivos , Anticuerpos de Dominio Único/genética , Solubilidad
17.
Sci Rep ; 8(1): 2260, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29396522

RESUMEN

Assisted Design of Antibody and Protein Therapeutics (ADAPT) is an affinity maturation platform interleaving predictions and testing that was previously validated on monoclonal antibodies (mAbs). This study expands the applicability of ADAPT to single-domain antibodies (sdAbs), a promising class of recombinant antibody-based biologics. As a test case, we used the camelid sdAb A26.8, a VHH that binds Clostridium difficile toxin A (TcdA) relatively weakly but displays a reasonable level of TcdA neutralization. ADAPT-guided A26.8 affinity maturation resulted in an improvement of one order of magnitude by point mutations only, reaching an equilibrium dissociation constant (KD) of 2 nM, with the best binding mutants having similar or improved stabilities relative to the parent sdAb. This affinity improvement generated a 6-fold enhancement of efficacy at the cellular level; the A26.8 double-mutant T56R,T103R neutralizes TcdA cytotoxicity with an IC50 of 12 nM. The designed mutants with increased affinities are predicted to establish novel electrostatic interactions with the antigen. Almost full additivity of mutation effects is observed, except for positively charged residues introduced at adjacent positions. Furthermore, analysis of false-positive predictions points to general directions for improving the ADAPT platform. ADAPT guided the efficacy enhancement of an anti-toxin sdAb, an alternative therapeutic modality for C. difficile.


Asunto(s)
Anticuerpos Neutralizantes/metabolismo , Toxinas Bacterianas/antagonistas & inhibidores , Productos Biológicos/metabolismo , Diseño de Fármacos , Enterotoxinas/antagonistas & inhibidores , Factores Inmunológicos/metabolismo , Anticuerpos de Dominio Único/metabolismo , Animales , Anticuerpos Neutralizantes/genética , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Factores Inmunológicos/genética , Concentración 50 Inhibidora , Unión Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Anticuerpos de Dominio Único/genética , Células Vero
18.
Mol Immunol ; 90: 190-196, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28820969

RESUMEN

We have previously shown that incorporation of a second intradomain disulfide linkage into camelid VHH and human VH/VL single-domain antibodies confers increased thermostability. Here, we explored the effects of introducing an additional disulfide linkage, formed between Cys48 and Cys64 (Kabat numbering), into a phage-displayed synthetic human VL library. In comparison to an identical library bearing only the highly conserved Cys23-Cys88 disulfide linkage, the disulfide-stabilized VL library tolerated a similar degree of randomization but retained a higher level of functional diversity after selection with protein L. Both libraries yielded soluble, antigen-specific VLs that recognized a model antigen (maltose-binding protein) with similar affinities, in the micromolar range; however, the disulfide-stabilized antigen-specific VLs were much more thermostable (average ΔTm ∼10°C) than non-disulfide-stabilized VLs. This work provides proof-of-concept for building synthetic antibody libraries using disulfide-constrained immunoglobulin domains, thus avoiding pitfalls of post-hoc disulfide linkage engineering such as impaired antigen binding and reduced expression yield.


Asunto(s)
Cadenas Ligeras de Inmunoglobulina/inmunología , Región Variable de Inmunoglobulina/inmunología , Proteínas de Unión a Maltosa/inmunología , Biblioteca de Péptidos , Ingeniería de Proteínas/métodos , Anticuerpos de Dominio Único/inmunología , Secuencia de Aminoácidos , Afinidad de Anticuerpos/inmunología , Técnicas de Visualización de Superficie Celular , Disulfuros/química , Humanos , Cadenas Ligeras de Inmunoglobulina/química , Región Variable de Inmunoglobulina/química , Resonancia por Plasmón de Superficie , Biología Sintética , Temperatura
19.
Front Immunol ; 8: 1759, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29375542

RESUMEN

Human autonomous VH/VL single-domain antibodies (sdAbs) are attractive therapeutic molecules, but often suffer from suboptimal stability, solubility and affinity for cognate antigens. Most commonly, human sdAbs have been isolated from in vitro display libraries constructed via synthetic randomization of rearranged VH/VL domains. Here, we describe the design and characterization of three novel human VH/VL sdAb libraries through a process of: (i) exhaustive biophysical characterization of 20 potential VH/VL sdAb library scaffolds, including assessment of expression yield, aggregation resistance, thermostability and tolerance to complementarity-determining region (CDR) substitutions; (ii) in vitro randomization of the CDRs of three VH/VL sdAb scaffolds, with tailored amino acid representation designed to promote solubility and expressibility; and (iii) systematic benchmarking of the three VH/VL libraries by panning against five model antigens. We isolated ≥1 antigen-specific human sdAb against four of five targets (13 VHs and 7 VLs in total); these were predominantly monomeric, had antigen-binding affinities ranging from 5 nM to 12 µM (average: 2-3 µM), but had highly variable expression yields (range: 0.1-19 mg/L). Despite our efforts to identify the most stable VH/VL scaffolds, selection of antigen-specific binders from these libraries was unpredictable (overall success rate for all library-target screens: ~53%) with a high attrition rate of sdAbs exhibiting false positive binding by ELISA. By analyzing VH/VL sdAb library sequence composition following selection for monomeric antibody expression (binding to protein A/L followed by amplification in bacterial cells), we found that some VH/VL sdAbs had marked growth advantages over others, and that the amino acid composition of the CDRs of this set of sdAbs was dramatically restricted (bias toward Asp and His and away from aromatic and hydrophobic residues). Thus, CDR sequence clearly dramatically impacts the stability of human autonomous VH/VL immunoglobulin domain folds, and sequence-stability tradeoffs must be taken into account during the design of such libraries.

20.
Protein Eng Des Sel ; 29(10): 439-443, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27613412

RESUMEN

The epitope specificity of therapeutic antibodies is often critical to their efficacy and mode of action. Here, we report the isolation of single-domain antibodies (sdAbs) against a pre-specified epitope of TGF-ß3: namely, the site of interaction between the cytokine and its cell-surface type II receptor. By panning a phage-displayed immune llama VhH library against TGF-ß3 using competitive elution with soluble dimeric type II receptor ectodomain in tandem with next-generation DNA sequencing, we identified several sdAbs that competed with the receptor for TGF-ß3 binding and neutralized TGF-ß3 in in vitro cellular assays. In contrast, all other sdAbs identified using conventional panning approaches (i.e., without regard to epitope specificity) did not target the site of receptor:cytokine interaction. We expect this strategy to be generally applicable for identifying epitope-specific sdAbs when binding reagents directed against the epitope of interest are available. The sdAbs identified here are of potential interest as cancer immunotherapeutics.


Asunto(s)
Epítopos/inmunología , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN , Anticuerpos de Dominio Único/genética , Anticuerpos de Dominio Único/inmunología , Factor de Crecimiento Transformador beta/inmunología , Animales , Anticuerpos Neutralizantes/genética , Anticuerpos Neutralizantes/inmunología , Especificidad de Anticuerpos , Camélidos del Nuevo Mundo/inmunología , Masculino , Estabilidad Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...