Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Pathol ; 192(5): 771-782, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35189097

RESUMEN

Macrophages aid in wound healing by changing their phenotype and can be a key driver of fibrosis. However, the contribution of macrophage phenotype to fibrosis following vocal fold injury remains unclear. Peroxisome proliferator-activated receptor-γ (PPARγ) is expressed mainly by macrophages during early wound healing and regulates the macrophage phenotype. This study aimed to evaluate the effects of pioglitazone (PIO), a PPARγ agonist, on the macrophage phenotype and fibrosis following vocal fold injury in rats. PIO was injected into the rat vocal folds on days 1, 3, 5, and 7 after injury, and the vocal fold lamina propria was evaluated on days 4 and 56 after injury. Moreover, THP-1-derived macrophages were treated with PIO, and the expression of proinflammatory cytokines under lipopolysaccharide/interferon-γ stimulation was analyzed. PIO reduced the expression of Ccl2 both in vivo and in vitro. Furthermore, PIO decreased the density of inducible nitric oxide synthase+ CD68+ macrophages and inhibited the expression of fibrosis-related factors on day 4 after injury. On day 56 after injury, PIO inhibited fibrosis, tissue contracture, and hyaluronic acid loss in a PPARγ-dependent manner. These results indicate that PPARγ activation could inhibit accumulation of inflammatory macrophages and improve tissue repair. Taken together, these findings imply that inflammatory macrophages play a key role in vocal fold fibrosis.


Asunto(s)
PPAR gamma , Tiazolidinedionas , Animales , Fibrosis , Hipoglucemiantes/farmacología , Activación de Macrófagos , PPAR gamma/genética , Pioglitazona/farmacología , Ratas , Tiazolidinedionas/farmacología , Pliegues Vocales/metabolismo
2.
Biochem Biophys Res Commun ; 601: 31-37, 2022 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-35220011

RESUMEN

Post-radiation fibrosis of the vocal folds is thought to cause vocal impairment. However, the mechanism by which this occurs has been poorly documented, probably because of the lack of an appropriate experimental animal model. The purpose of this study was to establish a simple and reproducible mouse model of laryngeal radiation to investigate the development of vocal fold fibrosis over time. C57BL/6 mice individually placed in a lead shield were irradiated with a single dose of 20 Gy. At 1, 2, and 6 months after irradiation, larynges were harvested and subjected to histological examination and gene expression analysis. Irradiated vocal folds showed time-dependent tissue contraction and increased collagen deposition, with no significant difference in the changes in hyaluronic acid levels. Transcriptional analysis revealed upregulated expressions of TGF-ß1 and iNOS at 6 months, but downregulated expressions of Acta2, Col1a1, Col3a1, and MMP8. Moreover, elevated TGF-ß1 and reduced downstream gene expression levels indicated the existence of an inhibitory factor over the TGF-ß/Smad pathway. Discrepancies in histological and transcriptional studies of collagen might suggest that radiation-induced vocal fold fibrosis could be caused by the elongated turnover of collagen. Overall, we established a mouse model of radiation-induced vocal fold fibrosis using a simple protocol. Further investigations are warranted to elucidate the pathogenesis of irradiation-induced fibrosis in vocal folds.


Asunto(s)
Factor de Crecimiento Transformador beta1 , Pliegues Vocales , Animales , Colágeno/genética , Colágeno/metabolismo , Modelos Animales de Enfermedad , Fibrosis , Ratones , Ratones Endogámicos C57BL , Factor de Crecimiento Transformador beta1/metabolismo , Pliegues Vocales/metabolismo , Pliegues Vocales/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...