Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
FEBS Lett ; 597(18): 2316-2333, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37574219

RESUMEN

We previously found that overexpression of phosphate starvation-responsive genes by disrupting PHO80 led to a shortened replicative lifespan in yeast. To identify lifespan-related genes, we screened upregulated genes in the pho80Δ mutant and focused on the VTC genes, which encode the vacuolar polyphosphate (polyP) polymerase complex. VTC1/VTC2/VTC4 deletion restored the lifespan and intracellular polyP levels in pho80Δ. In the wild type, overexpression of VTC5 or a combination of the other VTCs caused high polyP accumulation and shortened lifespan. Similar phenotypes were caused by the deletion of polyP phosphatase genes-vacuolar PPN1 and cytosolic PPX1. The polyP-accumulating strains exhibited stress sensitivities. Thus, we demonstrated that polyP metabolic enzymes participate in replicative lifespan, and extreme polyP accumulation shortens the lifespan.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Polifosfatos/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Longevidad/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Int J Mol Sci ; 24(7)2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37047295

RESUMEN

Previous works have shown the existence of protein partnership, belonging to a MultiStep Phosphorelay (MSP), potentially involved in osmosensing in Populus. The first actor of this signalling pathway belongs to the histidine-aspartate kinase (HK) family, which also includes the yeast osmosensor Sln1, as well as the Arabidopsis putative osmosensor AHK1. In poplar, the homologous AHK1 protein corresponds to a pair of paralogous proteins, HK1a and HK1b, exhibiting an extracellular domain (ECD), as in Sln1 and AHK1. An ECD alignment of AHK1-like proteins, from different plant species, showed a particularly well conserved ECD and revealed the presence of a cache domain. This level of conservation suggested a functional role of this domain in osmosensing. Thus, we tested this possibility by modelling assisted mutational analysis of the cache domain of the Populus HK1 proteins. The mutants were assessed for their ability to respond to different osmotic stress and the results point to an involvement of this domain in HK1 functionality. Furthermore, since HK1b was shown to respond better to stress than HK1a, these two receptors constituted a good system to search for osmosensing determinants responsible for this difference in efficiency. With domain swapping experiments, we finally demonstrated that the cache domain, as well as the second transmembrane domain, are involved in the osmosensing efficiency of these receptors.


Asunto(s)
Arabidopsis , Populus , Proteínas de Saccharomyces cerevisiae , Histidina Quinasa/genética , Histidina Quinasa/metabolismo , Ácido Aspártico/metabolismo , Histidina/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Populus/genética , Populus/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo
3.
Commun Biol ; 4(1): 1093, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34535752

RESUMEN

TOR complex 1 (TORC1) is an evolutionarily-conserved protein kinase that controls cell growth and metabolism in response to nutrients, particularly amino acids. In mammals, several amino acid sensors have been identified that converge on the multi-layered machinery regulating Rag GTPases to trigger TORC1 activation; however, these sensors are not conserved in many other organisms including yeast. Previously, we reported that glutamine activates yeast TORC1 via a Gtr (Rag ortholog)-independent mechanism involving the vacuolar protein Pib2, although the identity of the supposed glutamine sensor and the exact TORC1 activation mechanism remain unclear. In this study, we successfully reconstituted glutamine-responsive TORC1 activation in vitro using only purified Pib2 and TORC1. In addition, we found that glutamine specifically induced a change in the folding state of Pib2. These findings indicate that Pib2 is a glutamine sensor that directly activates TORC1, providing a new model for the metabolic control of cells.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Glutamina/metabolismo , Metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Regulación Fúngica de la Expresión Génica/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción
4.
Plants (Basel) ; 8(12)2019 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-31835814

RESUMEN

We have previously identified proteins in poplar which belong to an osmosensing (OS) signaling pathway, called a multistep phosphorelay (MSP). The MSP comprises histidine-aspartate kinases (HK), which act as membrane receptors; histidine phosphotransfer (HPt) proteins, which act as phosphorelay proteins; and response regulators (RR), some of which act as transcription factors. In this study, we identified the HK proteins homologous to the Arabidopsis cytokinin (CK) receptors, which are first partners in the poplar cytokinin MSP, and focused on specificity of these two MSPs (CK and OS), which seem to share the same pool of HPt proteins. Firstly, we isolated five CK HKs from poplar which are homologous to Arabidopsis AHK2, AHK3, and AHK4, namely, HK2, HK3a, HK3b, HK4a, HK4b. These HKs were shown to be functional kinases, as observed in a functional complementation of a yeast HK deleted strain. Moreover, one of these HKs, HK4a, was shown to have kinase activity dependent on the presence of CK. Exhaustive interaction tests between these five CK HKs and the 10 HPts characterized in poplar were performed using two-hybrid and BiFC experiments. The resulting partnership was compared to that previously identified between putative osmosensors HK1a/1b and HPt proteins. Finally, in planta coexpression analysis of genes encoding these potential partners revealed that almost all HPts are coexpressed with CK HKs in four different poplar organs. Overall, these results allowed us to unravel the common and specific partnerships existing between OS and CK MSP in Populus.

5.
Mol Cell Biol ; 37(14)2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28483912

RESUMEN

Evolutionarily conserved target of rapamycin (TOR) complex 1 (TORC1) responds to nutrients, especially amino acids, to promote cell growth. In the yeast Saccharomyces cerevisiae, various nitrogen sources activate TORC1 with different efficiencies, although the mechanism remains elusive. Leucine, and perhaps other amino acids, was reported to activate TORC1 via the heterodimeric small GTPases Gtr1-Gtr2, the orthologues of the mammalian Rag GTPases. More recently, an alternative Gtr-independent TORC1 activation mechanism that may respond to glutamine was reported, although its molecular mechanism is not clear. In studying the nutrient-responsive TORC1 activation mechanism, the lack of an in vitro assay hinders associating particular nutrient compounds with the TORC1 activation status, whereas no in vitro assay that shows nutrient responsiveness has been reported. In this study, we have developed a new in vitro TORC1 kinase assay that reproduces, for the first time, the nutrient-responsive TORC1 activation. This in vitro TORC1 assay recapitulates the previously predicted Gtr-independent glutamine-responsive TORC1 activation mechanism. Using this system, we found that this mechanism specifically responds to l-glutamine, resides on the vacuolar membranes, and involves a previously uncharacterized Vps34-Vps15 phosphatidylinositol (PI) 3-kinase complex and the PI-3-phosphate [PI(3)P]-binding FYVE domain-containing vacuolar protein Pib2. Thus, this system was proved to be useful for dissecting the glutamine-responsive TORC1 activation mechanism.


Asunto(s)
Glutamina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Vacuolas/metabolismo , Regulación Fúngica de la Expresión Génica/fisiología , Fosfatos de Fosfatidilinositol
6.
Int J Mol Sci ; 17(12)2016 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-27941652

RESUMEN

Previous works have shown the existence of protein partnerships belonging to a MultiStep Phosphorelay (MSP) in Populus putatively involved in osmosensing. This study is focused on the identification of a histidine-aspartate kinase, HK1b, paralog of HK1a. The characterization of HK1b showed its ability to homo- and hetero-dimerize and to interact with a few Histidine-containing Phosphotransfer (HPt) proteins, suggesting a preferential partnership in poplar MSP linked to drought perception. Furthermore, determinants for interaction specificity between HK1a/1b and HPts were studied by mutagenesis analysis, identifying amino acids involved in this specificity. The HK1b expression analysis in different poplar organs revealed its co-expression with three HPts, reinforcing the hypothesis of partnership participation in the MSP in planta. Moreover, HK1b was shown to act as an osmosensor with kinase activity in a functional complementation assay of an osmosensor deficient yeast strain. These results revealed that HK1b showed a different behaviour for canonical phosphorylation of histidine and aspartate residues. These phosphorylation modularities of canonical amino acids could explain the improved osmosensor performances observed in yeast. As conserved duplicates reflect the selective pressures imposed by the environmental requirements on the species, our results emphasize the importance of HK1 gene duplication in poplar adaptation to drought stress.


Asunto(s)
Ácido Aspártico/metabolismo , Presión Osmótica , Populus/enzimología , Homología de Secuencia de Aminoácido , Estrés Fisiológico , Aminoácidos/metabolismo , Duplicación de Gen , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Histidina Quinasa , Proteínas Mutantes/metabolismo , Mutación/genética , Filogenia , Populus/genética , Unión Proteica , Multimerización de Proteína , Reproducibilidad de los Resultados , Estrés Fisiológico/genética , Especificidad por Sustrato , Técnicas del Sistema de Dos Híbridos
7.
Eukaryot Cell ; 14(10): 976-82, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26150415

RESUMEN

Yeast Bro1 and Rim20 belong to a family of proteins which possess a common architecture of Bro1 and V domains. Alix and His domain protein tyrosine phosphatase (HD-PTP), mammalian Bro1 family proteins, bind YP(X)nL (n = 1 to 3) motifs in their target proteins through their V domains. In Alix, the Phe residue, which is located in the hydrophobic groove of the V domain, is critical for binding to the YP(X)nL motif. Although the overall sequences are not highly conserved between mammalian and yeast V domains, we show that the conserved Phe residue in the yeast Bro1 V domain is important for binding to its YP(X)nL-containing target protein, Rfu1. Furthermore, we show that Rim20 binds to its target protein Rim101 through the interaction between the V domain of Rim20 and the YPIKL motif of Rim101. The mutation of either the critical Phe residue in the Rim20 V domain or the YPIKL motif of Rim101 affected the Rim20-mediated processing of Rim101. These results suggest that the interactions between V domains and YP(X)nL motif-containing proteins are conserved from yeast to mammalian cells. Moreover, the specificities of each V domain to their target protein suggest that unidentified elements determine the binding specificity.


Asunto(s)
Secuencias de Aminoácidos/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Complejos de Clasificación Endosomal Requeridos para el Transporte/ultraestructura , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Tirosina Fosfatasas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestructura
8.
Physiol Plant ; 149(2): 188-99, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23330606

RESUMEN

In poplar, we identified proteins homologous to yeast proteins involved in osmosensing multistep phosphorelay Sln1p-Ypd1p-Ssk1p. This finding led us to speculate that Populus cells could sense osmotic stress by a similar mechanism. This study focuses on first and second protagonists of this possible pathway: a histidine-aspartate kinase (HK1), putative osmosensor and histidine phosphotransfer proteins (HPt1 to 10), potential partners of this HK. Characterization of HK1 showed its ability to homodimerize in two-hybrid tests and to act as an osmosensor with a kinase activity in yeast, by functional complementation of sln1Δ sho1Δ strain. Moreover, in plant cells, plasma membrane localization of HK1 is shown. Further analysis on HPts allowed us to isolate seven new cDNAs, leading to a total of 10 different HPts identified in poplar. Interaction tests showed that almost all HPts can interact with HK1, but two of them exhibit stronger interactions, suggesting a preferential partnership in poplar. The importance of the phosphorylation status in these interactions has been investigated with two-hybrid tests carried out with mutated HK1 forms. Finally, in planta co-expression analysis of genes encoding these potential partners revealed that only three HPts are co-expressed with HK1 in different poplar organs. This result reinforces the hypothesis of a partnership between HK1 and these three preferential HPts in planta. Taken together, these results shed some light on proteins partnerships that could be involved in the osmosensing pathway in Populus.


Asunto(s)
Aspartato Quinasa/metabolismo , Histidina/metabolismo , Proteínas de Plantas/metabolismo , Populus/metabolismo , Proteínas Quinasas/metabolismo , Secuencia de Aminoácidos , Aspartato Quinasa/química , Aspartato Quinasa/genética , Western Blotting , Prueba de Complementación Genética , Histidina/genética , Histidina Quinasa , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Mutación , Fosforilación , Proteínas de Plantas/química , Proteínas de Plantas/genética , Populus/genética , Unión Proteica , Proteínas Quinasas/química , Proteínas Quinasas/genética , Multimerización de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Técnicas del Sistema de Dos Híbridos
9.
Mol Cell Biol ; 32(14): 2861-70, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22586268

RESUMEN

The yeast high-osmolarity glycerol response (HOG) mitogen-activated protein (MAP) kinase pathway is activated in response to hyperosmotic stress via two independent osmosensing branches, the Sln1 branch and the Sho1 branch. While the mechanism by which the osmosensing machinery activates the downstream MAP kinase cascade has been well studied, the mechanism by which the machinery senses and responds to hyperosmotic stress remains to be clarified. Here we report that inhibition of the de novo sphingolipid synthesis pathway results in activation of the HOG pathway via both branches. Inhibition of ergosterol biosynthesis also induces activation of the HOG pathway. Sphingolipids and sterols are known to be tightly packed together in cell membranes to form partitioned domains called rafts. Raft-enriched detergent-resistant membranes (DRMs) contain both Sln1 and Sho1, and sphingolipid depletion and hyperosmotic stress have similar effects on the osmosensing machinery of the HOG pathway: dissociation of an Sln1-containing protein complex and elevated association of Sho1 with DRMs. These observations reveal the sphingolipid-mediated regulation of the osmosensing machinery of the HOG pathway.


Asunto(s)
Glicerol/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Esfingolípidos/metabolismo , Filipina/farmacología , Genes Fúngicos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Sistema de Señalización de MAP Quinasas , Microdominios de Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Mutación , Concentración Osmolar , Presión Osmótica , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
10.
Eukaryot Cell ; 9(6): 943-51, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20382759

RESUMEN

The budding yeast Saccharomyces cerevisiae alters its gene expression profile in response to changing environmental conditions. The Pho85 kinase, one of the yeast cyclin-dependent kinases (CDK), is known to play an important role in the cellular response to alterations in parameters such as nutrient levels and salinity. Several genes whose expression is regulated, either directly or indirectly, by the Rim101 transcription factor become constitutively activated when Pho85 function is absent. Because Rim101 is responsible for adaptation to alkaline conditions, this observation suggests an interaction between Pho85 and Rim101 in the response to alkaline stress. We have found that Pho85 affects neither RIM101 transcription, the proteolytic processing that is required for Rim101 activation, nor Rim101 stability. Rather, Pho85 regulates the nuclear accumulation of active Rim101, possibly via phosphorylation. Additionally, we report that Pho85 and the transcription factor Pho4 are necessary for adaptation to alkaline conditions and that PTK2 activation by Pho4 is involved in this process. These findings illustrate novel roles for the regulators of the PHO system when yeast cells cope with various environmental stresses potentially threatening their survival.


Asunto(s)
Quinasas Ciclina-Dependientes/fisiología , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/enzimología , Estrés Fisiológico/genética , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Concentración de Iones de Hidrógeno , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Represoras/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...