RESUMEN
Results of groundwater and seawater analyses for radioactive (3H, 222Rn, 223Ra, 224Ra, 226Ra, and 228Ra) and stable (D and 18O) isotopes are presented together with in situ spatial mapping and time series 222Rn measurements in seawater, direct seepage measurements using manual and automated seepage meters, pore water investigations using different tracers and piezometric techniques, and geoelectric surveys probing the coast. This study represents first time that such a new complex arsenal of radioactive and non-radioactive tracer techniques and geophysical methods have been used for simultaneous submarine groundwater discharge (SGD) investigations. Large fluctuations of SGD fluxes were observed at sites situated only a few meters apart (from 0 cm d(-1) to 360 cm d(-1); the unit represents cm3/cm2/day), as well as during a few hours (from 0 cm d(-1) to 110 cm d(-1)), strongly depending on the tidal fluctuations. The average SGD flux estimated from continuous 222Rn measurements is 17+/-10 cm d(-1). Integrated coastal SGD flux estimated for the Ubatuba coast using radium isotopes is about 7x10(3) m3 d(-1) per km of the coast. The isotopic composition (deltaD and delta18O) of submarine waters was characterised by significant variability and heavy isotope enrichment, indicating that the contribution of groundwater in submarine waters varied from a small percentage to 20%. However, this contribution with increasing offshore distance became negligible. Automated seepage meters and time series measurements of 222Rn activity concentration showed a negative correlation between the SGD rates and tidal stage. This is likely caused by sea level changes as tidal effects induce variations of hydraulic gradients. The geoelectric probing and piezometric measurements contributed to better understanding of the spatial distribution of different water masses present along the coast. The radium isotope data showed scattered distributions with offshore distance, which imply that seawater in a complex coast with many small bays and islands was influenced by local currents and groundwater/seawater mixing. This has also been confirmed by a relatively short residence time of 1-2 weeks for water within 25 km offshore, as obtained by short-lived radium isotopes. The irregular distribution of SGD seen at Ubatuba is a characteristic of fractured rock aquifers, fed by coastal groundwater and recirculated seawater with small admixtures of groundwater, which is of potential environmental concern and has implications on the management of freshwater resources in the region.
Asunto(s)
Radioisótopos/análisis , Agua de Mar/análisis , Navíos , Contaminantes Radiactivos del Agua/análisis , Brasil , Geografía , Radio (Elemento)/análisis , Radón/análisis , Tritio/análisis , Movimientos del AguaRESUMEN
Estudo sobre o que há de novo na mortalidade infantil na cidade de São Paulo em anos recentes
Asunto(s)
Humanos , Mortalidad Infantil , PeriodicidadRESUMEN
Estudo sobre o que há de novo na mortalidade infantil na cidade de São Paulo em anos recentes
Asunto(s)
Humanos , Mortalidad Infantil , PeriodicidadRESUMEN
Submarine groundwater discharge (SGD) is now recognized as an important pathway between land and sea. As such, this flow may contribute to the biogeochemical and other marine budgets of near-shore waters. These discharges typically display significant spatial and temporal variability making assessments difficult. Groundwater seepage is patchy, diffuse, temporally variable, and may involve multiple aquifers. Thus, the measurement of its magnitude and associated chemical fluxes is a challenging enterprise. A joint project of UNESCO and the International Atomic Energy Agency (IAEA) has examined several methods of SGD assessment and carried out a series of five intercomparison experiments in different hydrogeologic environments (coastal plain, karst, glacial till, fractured crystalline rock, and volcanic terrains). This report reviews the scientific and management significance of SGD, measurement approaches, and the results of the intercomparison experiments. We conclude that while the process is essentially ubiquitous in coastal areas, the assessment of its magnitude at any one location is subject to enough variability that measurements should be made by a variety of techniques and over large enough spatial and temporal scales to capture the majority of these changing conditions. We feel that all the measurement techniques described here are valid although they each have their own advantages and disadvantages. It is recommended that multiple approaches be applied whenever possible. In addition, a continuing effort is required in order to capture long-period tidal fluctuations, storm effects, and seasonal variations.