Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 62(43): e202307791, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37527192

RESUMEN

A series of exo-olefin compounds ((CH3 )2 C(PhY)-CH2 C(=CH2 )PhY) were prepared by selective cationic dimerization of α-methylstyrene (αMS) derivatives (CH2 =C(CH3 )PhY) with p-toluenesulfonic acid (TsOH) via ß-C-H scission. They were subsequently used as reversible chain transfer agents for sulfur-free cationic RAFT polymerization of αMS via ß-C-C scission in the presence of Lewis acid catalysts such as SnCl4 . In particular, exo-olefin compounds with electron-donating substituents, such as a 4-MeO group (Y) on the aromatic ring, worked as efficient cationic RAFT agents for αMS to produce poly(αMS) with controlled molecular weights and exo-olefin terminals. Other exo-olefin compounds (R-CH2 C(=CH2 )(4-MeOPh)) with various R groups were prepared by different methods to examine the effects of R groups on the cationic RAFT polymerization. A sulfur-free cationic RAFT polymerization also proceeded for isobutylene (IB) with the exo-olefin αMS dimer ((CH3 )2 C(Ph)-CH2 C(=CH2 )Ph). Furthermore, telechelic poly(IB) with exo-olefins at both terminals was obtained with a bifunctional RAFT agent containing two exo-olefins. Finally, block copolymers of αMS and methyl methacrylate (MMA) were prepared via mechanistic transformation from cationic to radical RAFT polymerization using exo-olefin terminals containing 4-MeOPh groups as common sulfur-free RAFT groups for both cationic and radical polymerizations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA