Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Anat Rec (Hoboken) ; 306(2): 311-325, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36059141

RESUMEN

Jaw mechanics of lamniform sharks were examined three-dimensionally to analyze the variability in jaw shape and the evolution of the jaw system based on the extant macrophagous species. Three-dimensional lever analysis was applied to lamniform jaws to calculate bite force at each tooth relative to maximum input force from jaw adductor muscles for interspecific comparison of efficiency in lamniform jaws. When total input force from the jaw adductor muscles on both working and balancing sides of the skull is considered, input force varies along the jaw because the contribution by balancing side muscles is not constant. The phylogenetically basal-most species, Mitsukurina owstoni, has the least efficient jaws due to posteriorly positioned jaw adductor muscles. Our study shows that the higher efficiency of jaws is regarded as apomorphic in lamniform phylogeny owing to the anterior extension of jaw adductor muscles relative to M. owstoni and a relative decrease in jaw length in relation to width seen in some species, both of which increase leverage. Differences in the efficiency of jaws among derived genera or species are due to the morphology of their jaws. The relationship between calculated bite force relative to maximum input force and tooth morphology indicates low relative bite forces being exerted at anteriorly located, narrow, piercing teeth, whereas high relative bite forces at posteriorly located, broad, cutting, or crushing-type teeth. As a result, the biting pressure during feeding is maintained throughout the tooth series.


Asunto(s)
Tiburones , Diente , Animales , Tiburones/anatomía & histología , Maxilares/anatomía & histología , Diente/anatomía & histología , Cráneo , Filogenia , Fuerza de la Mordida , Fenómenos Biomecánicos
2.
J Anat ; 235(2): 299-312, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30993724

RESUMEN

The upper beak bone of birds is known to be overlain by the rhinotheca, which is composed of the horny sheath of keratinous layers. However, the details of the structure and growth pattern of the rhinotheca are yet to be understood. In this study, the microstructure of the rhinotheca from chicken specimens of different growth stages (ranging from 1 to ~ 80 days old) was analyzed using a combination of thin section and scanning electron microscopy observations, and small-angle X-ray scattering analysis. We found that the rhinotheca comprises three different layers - outer, intermediate, and inner layers - throughout its growth. The outer layer arises from the proximal portion of the beak bone and covers the dorsal surface of the rhinotheca, whereas the intermediate and inner layers originate in the distal portion of the beak bone and underlie the outer layer. This tri-layered structure of the rhinotheca was also observed in wild bird specimens (grey wagtail, king quail, and brown dipper). On the median plane, micro-layers making up the outer and inner layers are bedded nearly parallel to the rostral bone at the base. However, more distally positioned micro-layers of the outer layer are more anteverted distally. The micro-layers of the intermediate layer are bedded nearly perpendicular to those of the outer and inner layers on the median plane. The growth of micro-layers in the intermediate layer adds thickness to the rhinotheca, which causes the difference in profile between the beak bone and the rhinotheca in the distal portion of the beak. Moreover, the entire intermediate layer grows distally as new proximal micro-layers form. The outer layer is dragged distally by the intermediate layer as a result of its distal growth, for the three layers are closely packed to each other at their boundaries. Furthermore, the occurrence of the intermediate and inner layers in the distal portion of the rostral bone may be because the distal end of the beak is frequently used and worn, and the rhinotheca therefore needs to be replaced more frequently at the distal end. The rhinotheca structure described here will be an important and useful factor in the reconstruction of the beaks of birds in extinct taxa.


Asunto(s)
Pico/ultraestructura , Pollos/anatomía & histología , Animales , Pico/crecimiento & desarrollo , Pollos/crecimiento & desarrollo , Coturnix/anatomía & histología , Femenino , Masculino , Passeriformes/anatomía & histología
3.
J Morphol ; 279(5): 636-647, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29480557

RESUMEN

The beak has independently been evolved accompanied by the edentulism in many tetrapod linages, including extant Testudinata and Aves, and its form and function have been greatly diversified. The beak is formed by beak bones and the overlying keratinous cover, although their profiles are different from each other. Therefore, it is difficult to reliably reconstruct the entire profile of the beak in extinct taxa, whose keratinous tissues are rarely preserved. For elucidation of the morphological relationship between beak bone and overlying keratinous cover, we compared the curvature distribution of the culminal profiles of the upper beak bone and the overlying keratinous cover (rhinotheca) with each other using CT-scan, in 66 extant testudinatan and avian specimens (Aves: 33 genera, 24 families; Testudinata: 12 genera seven families). In both, rhinotheca and beak bone, the curvature of the profile was nearly constant rostral to a certain point, which was defined as the transition point, and the transition points of the rhinotheca and beak bone were close to each other. The profiles of the rhinotheca and beak bone rostral to their transition point were different in curvature and length. However, the ratio between the curvatures of rhinotheca and the beak bone strongly correlated with the arc angle of the rostral culminal profiles of the beak bone. The upper beak profile in extinct taxa is expected to be reconstructed more reliably using the abovementioned relationship between the beak bone and the rhinotheca.


Asunto(s)
Pico/anatomía & histología , Aves/anatomía & histología , Tortugas/anatomía & histología , Animales , Fósiles/anatomía & histología
4.
Anat Rec (Hoboken) ; 292(9): 1352-69, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19711460

RESUMEN

Ceratopsian dinosaurs were a dominant group of herbivores in Cretaceous terrestrial ecosystems. We hypothesize that an understanding of the feeding system will provide important insight into the evolutionary success of these animals. The mandibular mechanics of eight genera of basal ceratopsians was examined to understand the variability in shape of the jaws and the early evolution of the masticatory system in Ceratopsia. Data were collected on lever arms, cranial angles and tooth row lengths. The results indicate that psittacosaurids had higher leverage at the beak and in the rostral part of the tooth row than basal neoceratopsians, but lower leverage in the caudal part of the tooth row. Although the vertebrate mandible is generally considered as a third-class lever, that of basal neoceratopsians acted as a second-class lever at the caudal part of the tooth row, as is also true in ceratopsids. When total input force from the mandibular adductor muscles on both sides of the skull is considered, the largest bite force in basal ceratopsian tooth rows was exerted in the caudal part of the tooth row at the caudal extremity of the zone with near-maximum input force. Medially positioned teeth generate higher leverage than laterally positioned teeth. The largest bite force in all basal ceratopsians is smaller than the maximum input force, a limit imposed by the morphology of the basal ceratopsian masticatory system. In ceratopsids, caudal extension of the tooth row resulted in a much larger bite force, even exceeding the maximum input force.


Asunto(s)
Fenómenos Biomecánicos/fisiología , Dinosaurios/anatomía & histología , Maxilares/anatomía & histología , Masticación/fisiología , Sistema Estomatognático/anatomía & histología , Adaptación Fisiológica/fisiología , Animales , Fuerza de la Mordida , Clasificación , Dinosaurios/fisiología , Conducta Alimentaria/fisiología , Maxilares/fisiología , Plantas Comestibles/anatomía & histología , Cráneo/anatomía & histología , Cráneo/fisiología , Especificidad de la Especie , Sistema Estomatognático/fisiología , Diente/anatomía & histología , Diente/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA