Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 14(17)2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36077745

RESUMEN

The vascular disrupting activity of a promising tubulin-binding agent (OXi6196) was demonstrated in mice in MDA-MB-231 human breast tumor xenografts growing orthotopically in mammary fat pad and syngeneic RENCA kidney tumors growing orthotopically in the kidney. To enhance water solubility, OXi6196, was derivatized as its corresponding phosphate prodrug salt OXi6197, facilitating effective delivery. OXi6197 is stable in water, but rapidly releases OXi6196 in the presence of alkaline phosphatase. At low nanomolar concentrations OXi6196 caused G2/M cell cycle arrest and apoptosis in MDA-MB-231 breast cancer cells and monolayers of rapidly growing HUVECs underwent concentration-dependent changes in their morphology. Loss of the microtubule structure and increased bundling of filamentous actin into stress fibers followed by cell collapse, rounding and blebbing was observed. OXi6196 (100 nM) disrupted capillary-like endothelial networks pre-established with HUVECs on Matrigel®. When prodrug OXi6197 was administered to mice bearing orthotopic MDA-MB-231-luc tumors, dynamic bioluminescence imaging (BLI) revealed dose-dependent vascular shutdown with >80% signal loss within 2 h at doses ≥30 mg/kg and >90% shutdown after 6 h for doses ≥35 mg/kg, which remained depressed by at least 70% after 24 h. Twice weekly treatment with prodrug OXi6197 (20 mg/kg) caused a significant tumor growth delay, but no overall survival benefit. Similar efficacy was observed for the first time in orthotopic RENCA-luc tumors, which showed massive hemorrhage and necrosis after 24 h. Twice weekly dosing with prodrug OXi6197 (35 mg/kg) caused tumor growth delay in most orthotopic RENCA tumors. Immunohistochemistry revealed extensive necrosis, though with surviving peripheral tissues. These results demonstrate effective vascular disruption at doses comparable to the most effective vascular-disrupting agents (VDAs) suggesting opportunities for further development.

2.
Cancers (Basel) ; 13(19)2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34638255

RESUMEN

The selective disruption of tumor-associated vasculature represents an attractive therapeutic approach. We have undertaken the first in vivo evaluation of KGP265, a water-soluble prodrug of a benzosuberene-based tubulin-binding agent, and found promising vascular-disrupting activity in three distinct tumor types. Dose escalation in orthotopic MDA-MB-231-luc breast tumor xenografts in mice indicated that higher doses produced more effective vascular shutdown, as revealed by dynamic bioluminescence imaging (BLI). In syngeneic orthotopic 4T1-luc breast and RENCA-luc kidney tumors, dynamic BLI and oxygen enhanced multispectral optoacoustic tomography (OE-MSOT) were used to compare vascular shutdown following the administration of KGP265 (7.5 mg/kg). The BLI signal and vascular oxygenation response (ΔsO2) to a gas breathing challenge were both significantly reduced within 2 h, indicating vascular disruption, which continued over 24 h. A correlative histology confirmed increased necrosis and hemorrhage. Twice-weekly doses of KGP265 caused significant growth delay in both MDA-MB-231 and 4T1 breast tumors, with no obvious systemic toxicity. A combination with carboplatin produced significantly greater tumor growth delay than carboplatin alone, though significant carboplatin-associated toxicity was observed (whole-body weight loss). KGP265 was found to be effective at low concentrations, generating long-term vascular shutdown and tumor growth delay, thus providing strong rationale for further development, particularly in combination therapies.

3.
Medchemcomm ; 7(12): 2418-2427, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28217276

RESUMEN

The natural products colchicine and combretastatin A-4 (CA4) have been inspirational for the design and synthesis of structurally related analogues and spin-off compounds as inhibitors of tubulin polymerization. The discovery that a water-soluble phosphate prodrug salt of CA4 (referred to as CA4P) is capable of imparting profound and selective damage to tumor-associated blood vessels paved the way for the development of a new therapeutic approach for cancer treatment utilizing small-molecule inhibitors of tubulin polymerization that also act as vascular disrupting agents (VDAs). Combination of salient structural features associated with colchicine and CA4 led to the design and synthesis of a variety of fused aryl-cycloalkyl and aryl-heterocyclic compounds that function as inhibitors of tubulin polymerization. Prominent among these compounds is a benzosuberene analogue (referred to as KGP18), which demonstrates sub-nM cytotoxicity against human cancer cell lines and functions (when administered as a water-soluble prodrug salt) as a VDA in mouse models. Structure activity relationship considerations led to the evaluation of benzocyclooctyl [6,8 fused] and indene [6,5 fused] ring systems. Four benzocyclooctene and four indene analogues were prepared and evaluated biologically. Three of the benzocyclooctene analogues were active as inhibitors of tubulin polymerization (IC50 < 5 µM), and benzocyclooctene phenol 23 was comparable to KGP18 in terms of potency. The analogous indene-based compound 31 also functioned as an inhibitor of tubulin polymerization (IC50 = 11 µM) with reduced potency. The most potent inhibitor of tubulin polymerization from this group was benzocyclooctene analogue 23, and it was converted to its water-soluble prodrug salt 24 to assess its potential as a VDA. Preliminary in vivo studies, which utilized the MCF7-luc-GFP-mCherry breast tumor in a SCID mouse model, demonstrated that treatment with 24 (120 mg/kg) resulted in significant vascular shutdown, as evidenced by bioluminescence imaging at 4 h post administration, and that the effect continued at both 24 and 48 h. Contemporaneous studies with CA4P, a clinically relevant VDA, were carried out as a positive control.

4.
J Med Chem ; 58(3): 1494-501, 2015 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-25581127

RESUMEN

We present a new approach to carbonic anhydrase II (CA II) inhibitor design that enables close interrogation of the regions of the CA active site where there is the greatest variability in amino acid residues among the different CA isozymes. By appending dual tail groups onto the par excellence CA inhibitor acetazolamide, compounds that may interact with the distinct hydrophobic and hydrophilic halves of the CA II active site were prepared. The dual-tail combinations selected included (i) two hydrophobic moieties, (ii) two hydrophilic moieties, and (iii) one hydrophobic and one hydrophilic moiety. The CA enzyme inhibition profile as well as the protein X-ray crystal structure of compound 3, comprising one hydrophobic and one hydrophilic tail moiety, in complex with CA II is described. This novel dual-tail approach has provided an enhanced opportunity to more fully exploit interactions with the CA active site by enabling these molecules to interact with the distinct halves of the active site. In addition to the dual-tail compounds, a corresponding set of single-tail derivatives was synthesized, enabling a comparative analysis of the single-tail versus dual-tail compound CA inhibition profile.


Asunto(s)
Inhibidores de Anhidrasa Carbónica/farmacología , Anhidrasas Carbónicas/metabolismo , Inhibidores de Anhidrasa Carbónica/síntesis química , Inhibidores de Anhidrasa Carbónica/química , Dominio Catalítico/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad
5.
Bioorg Med Chem ; 23(24): 7497-520, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26775540

RESUMEN

The discovery of 3-methoxy-9-(30,40,50-trimethoxyphenyl)-6,7-dihydro-5H-benzo[7]annulen-4-ol (a benzosuberene-based analogue referred to as KGP18) was originally inspired by the natural products colchicine and combretastatin A-4 (CA4). The relative structural simplicity and ease of synthesis of KGP18, coupled with its potent biological activity as an inhibitor of tubulin polymerization and its cytotoxicity (in vitro) against human cancer cell lines, has resulted in studies focused on new analogue design and synthesis. Our goal was to probe the relationship of structure to function in this class of anticancer agents. A series of twenty-two new benzosuberene-based analogues of KGP18 was designed and synthesized. These compounds vary in their methoxylation pattern and separately incorporate trifluoromethyl groups around the pendant aryl ring for the evaluation of the effect of functional group modifications on the fused six-membered aromatic ring. In addition, the 8,9-saturated congener of KGP18 has been synthesized to assess the necessity of unsaturation at the carbon atom bearing the pendant aryl ring. Six of the molecules from this benzosuberene-series of compounds were active (IC50 < 5 lM) as inhibitors of tubulin polymerization while four analogues were comparable (IC50 approximately 1 lM) in their tubulin inhibitory activity to CA4 and KGP18. The potency of a bis-trifluoromethyl analogue 74 and the unsaturated KGP18 derivative 73 as inhibitors of tubulin assembly along with their moderate cytotoxicity suggested the potential utility of these compounds as vascular disrupting agents (VDAs) to selectively target microvessels feeding tumors. Accordingly, water-soluble and DMSO-soluble phosphate prodrug salts of each were synthesized for preliminary in vivo studies to assess their potential efficacy as VDAs.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Cumarinas/farmacología , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacología , Tubulina (Proteína)/metabolismo , Animales , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Cumarinas/uso terapéutico , Humanos , Ratones SCID , Simulación del Acoplamiento Molecular , Neoplasias/irrigación sanguínea , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Polimerizacion/efectos de los fármacos , Moduladores de Tubulina/uso terapéutico
6.
Chem Biol Drug Des ; 84(4): 462-72, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24720445

RESUMEN

Pharmacophore hybridization has recently been employed in the search for antimalarial lead compounds. This approach chemically links two pharmacophores, each with their own antimalarial activity and ideally with different modes of action, into a single hybrid molecule with the goal to improve therapeutic properties. In this paper, we report the synthesis of novel 7-chloro-4-aminoquinoline/primary sulfonamide hybrid compounds. The chlorinated 4-aminoquinoline scaffold is the core structure of chloroquine, an established antimalarial drug, while the primary sulfonamide functional group has a proven track record of efficacy and safety in many clinically used drugs and was recently shown to exhibit some antimalarial activity. The activity of the hybrid compounds was determined against chloroquine-sensitive (3D7) and chloroquine-resistant (Dd2) Plasmodium falciparum strains. While the hybrid compounds had lower antimalarial activity when compared to chloroquine, they demonstrated a number of interesting structure-activity relationship (SAR) trends including the potential to overcome the resistance profile of chloroquine.


Asunto(s)
Aminoquinolinas/química , Antimaláricos/síntesis química , Sulfonamidas/química , Antimaláricos/química , Antimaláricos/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Química Clic , Diseño de Fármacos , Resistencia a Medicamentos/efectos de los fármacos , Humanos , Plasmodium falciparum/efectos de los fármacos , Relación Estructura-Actividad
7.
Bioorg Med Chem ; 21(24): 8019-32, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24183586

RESUMEN

Diversely functionalized, fused aryl-alkyl ring systems hold a prominent position as well-established molecular frameworks for a variety of anti-cancer agents. The benzosuberene (6,7 fused, also referred to as dihydro-5H-benzo[7]annulene and benzocycloheptene) ring system has emerged as a valuable molecular core component for the development of inhibitors of tubulin assembly, which function as antiproliferative anti-cancer agents and, in certain cases, as vascular disrupting agents (VDAs). Both a phenolic-based analogue (known as KGP18, compound 39) and its corresponding amine-based congener (referred to as KGP156, compound 45), which demonstrate strong inhibition of tubulin assembly (low micromolar range) and potent cytotoxicity (picomolar range for KGP18 and nanomolar range for KGP156) are noteworthy examples of such benzosuberene-based compounds. In order to extend the structure-activity relationship (SAR) knowledge base related to benzosuberene anti-cancer agents, a series of eleven analogues (including KGP18) were prepared in which the methoxylation pattern on the pendant aryl ring as well as functional group incorporation on the fused aryl ring were varied. The synthetic approach to these compounds featured a sequential Wittig olefination, reduction, Eaton's reagent-mediated cyclization strategy to achieve the core benzosuberone intermediate, and represented a higher-yielding synthesis of KGP18 (which we prepared previously through a ring-expansion strategy). Incorporation of a fluorine or chlorine atom at the 1-position of the fused aryl ring or replacement of one of the methoxy groups with hydrogen (on the pendant aryl ring of KGP18) led to benzosuberene analogues that were both strongly inhibitory against tubulin assembly (IC50 approximately 1.0 µM) and strongly cytotoxic against selected human cancer cell lines (for example, GI50=5.47 nM against NCI-H460 cells with fluoro-benzosuberene analogue 37). A water-soluble phosphate prodrug salt of KGP18 (referred to as KGP265, compound 44) and a water-soluble serinamide salt (compound 48) of KGP156 were also synthesized and evaluated in this study.


Asunto(s)
Antineoplásicos/farmacología , Benzocicloheptenos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Benzocicloheptenos/síntesis química , Benzocicloheptenos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Polimerizacion/efectos de los fármacos , Relación Estructura-Actividad , Tubulina (Proteína)/metabolismo
8.
Medchemcomm ; 3(6): 720-724, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23772309

RESUMEN

The recent discovery of a small-molecule benzosuberene-based phenol that demonstrates remarkable picomolar cytotoxicity against selected human cancer cell lines and strongly inhibits tubulin polymerization (1-2 µM) inspired the design and synthesis of a variety of new, structurally diverse benzosuberene derivatives. An efficient synthetic route to functionalized benzosuberenes was developed. This methodology utilized a Wittig reaction, followed by a selective alkene reduction and ring-closing cyclization to form the core benzosuberone structure. This synthetic route facilitated the preparation of a 6-nitro-1-(3',4',5'-trimethoxyphenyl) benzosuberene derivative and its corresponding 6-amino analogue in good yield. The 6-amino analogue was a strong inhibitor of tubulin polymerization (1.2 µM), demonstrated enhanced cytotoxicity against the human cancer cell lines examined (GI50 = 33 pM against SK-OV-3 ovarian cancer, for example), and exhibited a concentration dependent disruption of a pre-established capillary-like network of tubules formed from human umbilical vein endothelial cells.

9.
J Nat Prod ; 74(7): 1568-74, 2011 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-21718055

RESUMEN

The natural products combretastatin A-4 (CA4) and combretastatin A-1 (CA1) are potent cancer vascular disrupting agents and inhibitors of tubulin assembly (IC50 = 1-2 µM). The phosphorylated prodrugs CA4P and CA1P are undergoing human clinical trials against cancer. CA1 is unique due to its incorporation of a vicinal phenol, which has afforded the opportunity to prepare both diphosphate and regioisomeric monophosphate derivatives. Here, we describe the first synthetic routes suitable for the regiospecific preparation of the CA1-monophosphates CA1MPA (8a/b) and CA1MPB (4a/b). The essential regiochemistry necessary to distinguish between the two vicinal phenolic groups was accomplished with a tosyl protecting group strategy. Each of the four monophosphate analogues (including Z and E isomers) demonstrated in vitro cytotoxicity against selected human cancer cell lines comparable to their corresponding diphosphate congeners. Furthermore, Z-CA1MPA (8a) and Z-CA1MPB (4a) were inactive as inhibitors of tubulin assembly (IC50 > 40 µM), as anticipated in this pure protein assay.


Asunto(s)
Antineoplásicos Fitogénicos/síntesis química , Estilbenos/síntesis química , Antineoplásicos Fitogénicos/farmacología , Humanos , Concentración 50 Inhibidora , Estructura Molecular , Solubilidad , Estereoisomerismo , Estilbenos/farmacología , Relación Estructura-Actividad , Tubulina (Proteína)/metabolismo , Agua
10.
J Nat Prod ; 73(6): 1093-101, 2010 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-20496923

RESUMEN

Synthetic routes have been established for the preparation of regio- and stereoisomerically pure samples of the mono-beta-d-glucuronic acid derivatives of combretastatin A-1, referred to as CA1G1 (5a) and CA1G2 (6a). Judicious choice of protecting groups for the catechol ring was required for the regiospecific introduction of the glucuronic acid moiety. The tosyl group proved advantageous in this regard. The two monoglucuronic acid analogues demonstrate low cytotoxicity (compared to CA1, 2) against selected human cancer cell lines, with CA1G1 being slightly more potent than CA1G2.


Asunto(s)
Antineoplásicos Fitogénicos/síntesis química , Ácido Glucurónico/química , Ácido Glucurónico/síntesis química , Estilbenos/química , Estilbenos/síntesis química , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Ácido Glucurónico/farmacología , Humanos , Estructura Molecular , Estereoisomerismo , Estilbenos/farmacología
11.
Bioorg Med Chem ; 17(19): 6993-7001, 2009 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-19733085

RESUMEN

Structural redesign of selected non-steroidal estrogen receptor binding compounds has previously been successful in the discovery of new inhibitors of tubulin assembly. Accordingly, tetra-substituted alkene analogues (21-30) were designed based in part on combinations of the structural and electronic components of tamoxifen and combretastatin A-4 (CA4). The McMurry coupling reaction was used as the key synthetic step in the preparation of these tri- and tetra-arylethylene analogues. The structural assignment of E, Z isomers was determined on the basis of 2D-NOESY experiments. The ability of these compounds to inhibit tubulin polymerization and cell growth in selected human cancer cell lines was evaluated. Although the compounds were found to be less potent than CA4, these analogues significantly advance the known structure-activity relationship associated with the colchicine binding site on beta-tubulin.


Asunto(s)
Antineoplásicos/síntesis química , Etilenos/síntesis química , Hidrocarburos Aromáticos/síntesis química , Moduladores de Tubulina/síntesis química , Antineoplásicos/farmacología , Sitios de Unión , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Colchicina , Diseño de Fármacos , Etilenos/farmacología , Humanos , Hidrocarburos Aromáticos/farmacología , Fenómenos Químicos Orgánicos , Receptores de Estrógenos/metabolismo , Relación Estructura-Actividad , Moduladores de Tubulina/farmacología
12.
Bioorg Med Chem Lett ; 13(9): 1505-8, 2003 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-12699742

RESUMEN

Combretastatin A-4 disodiumphosphate (CA4P), a prodrug formulation of the natural product combretastatin A-4 (CA4), is currently in clinical investigation for the treatment of cancer. In vivo, CA4P is rapidly enzymatically converted to CA4, a potent inhibitor of tubulin polymerization (IC(50)=1-2 microM), and rapidly causes bloodflow shutdown in tumor tissues. A variety of alkyl and aryl di- and triesters of CA4P have been synthesized and evaluated as potential CA4 prodrugs and/or stable CA4P analogues.


Asunto(s)
Inhibidores de la Angiogénesis/síntesis química , Organofosfatos/síntesis química , Profármacos/síntesis química , Estilbenos/química , Inhibidores de la Angiogénesis/farmacología , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Organofosfatos/farmacología , Profármacos/farmacología , Estilbenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...