Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Sens ; 9(5): 2605-2613, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38718161

RESUMEN

Several new lines of research have demonstrated that a significant number of amyloid-ß peptides found in Alzheimer's disease (AD) are truncated and undergo post-translational modification by glutaminyl cyclase (QC) at the N-terminal. Notably, QC's products of Abeta-pE3 and Abeta-pE11 have been active targets for investigational drug development. This work describes the design, synthesis, characterization, and in vivo validation of a novel PET radioligand, [18F]PB0822, for targeted imaging of QC. We report herein a simplified and robust chemistry for the synthesis of the standard compound, [19F]PB0822, and the corresponding [18F]PB0822 radioligand. The PET probe was developed with 99.9% radiochemical purity, a molar activity of 965 Ci.mmol-1, and an IC50 of 56.3 nM, comparable to those of the parent PQ912 inhibitor (62.5 nM). Noninvasive PET imaging showed that the probe is distributed in the brain 5 min after intravenous injection. Further, in vivo PET imaging with [18F]PB0822 revealed that AD 5XFAD mice harbor significantly higher QC activity than WT counterparts. The data also suggested that QC activity is found across different brain regions of the tested animals.


Asunto(s)
Enfermedad de Alzheimer , Aminoaciltransferasas , Tomografía de Emisión de Positrones , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Tomografía de Emisión de Positrones/métodos , Aminoaciltransferasas/metabolismo , Aminoaciltransferasas/antagonistas & inhibidores , Animales , Ratones , Radioisótopos de Flúor/química , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Encéfalo/enzimología , Radiofármacos/química , Radiofármacos/síntesis química , Biomarcadores/metabolismo , Humanos , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/análisis , Ligandos
2.
Cancer Med ; 13(3): e6812, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38239047

RESUMEN

BACKGROUND: It has been shown that tumor microenvironment (TME) hydroxyapatite (HAP) is typically associated with many malignancies and plays a role in tumor progression and growth. Additionally, acidosis in the TME has been reported to play a key role in selecting for a more aggressive tumor phenotype, drug resistance and desensitization to immunotherapy for many types of cancers. TME-HAP is an attractive target for tumor detection and treatment development since HAP is generally absent from normal soft tissue. We provide strong evidence that dissolution of hydroxyapatite (HAP) within the tumor microenvironment (TME-HAP) using a novel therapeutic can be used to kill cancer cells both in vitro and in vivo with minimal adverse effects. METHODS: We developed an injectable cation exchange nano particulate sulfonated polystyrene solution (NSPS) that we engineered to dissolve TME-HAP, inducing localized acute alkalosis and inhibition of tumor growth and glucose metabolism. This was evaluated in cell culture using 4T1, MDA-MB-231 triple negative breast cancer cells, MCF10 normal breast cells, and H292 lung cancer cells, and in vivo using orthotopic mouse models of cancer that contained detectable microenvironment HAP including breast (MMTV-Neu, 4T1, and MDA-MB-231), prostate (PC3) and colon (HCA7) cancer using 18 F-NaF for HAP and 18 F-FDG for glucose metabolism with PET imaging. On the other hand, H292 lung tumor cells that lacked detectable microenvironment HAP and MCF10a normal breast cells that do not produce HAP served as negative controls. Tumor microenvironment pH levels following injection of NSPS were evaluated via Chemical Exchange Saturation (CEST) MRI and via ex vivo methods. RESULTS: Within 24 h of adding the small concentration of 1X of NSPS (~7 µM), we observed significant tumor cell death (~ 10%, p < 0.05) in 4T1 and MDA-MB-231 cell cultures that contain HAP but ⟨2% in H292 and MCF10a cells that lack detectable HAP and in controls. Using CEST MRI, we found extracellular pH (pHe) in the 4T1 breast tumors, located in the mammary fat pad, to increase by nearly 10% from baseline before gradually receding back to baseline during the first hour post NSPS administration. in the tumors that contained TME-HAP in mouse models, MMTV-Neu, 4T1, and MDA-MB-231, PC3, and HCA7, there was a significant reduction (p<0.05) in 18 F-Na Fuptake post NSPS treatment as expected; 18 F- uptake in the tumor = 3.8 ± 0.5 %ID/g (percent of the injected dose per gram) at baseline compared to 1.8 ±0.5 %ID/g following one-time treatment with 100 mg/kg NSPS. Of similar importance, is that 18 F-FDG uptake in the tumors was reduced by more than 75% compared to baseline within 24 h of treatment with one-time NSPS which persisted for at least one week. Additionally, tumor growth was significantly slower (p < 0.05) in the mice treated with one-time NSPS. Toxicity showed no evidence of any adverse effects, a finding attributed to the absence of HAP in normal soft tissue and to our therapeutic NSPS having limited penetration to access HAP within skeletal bone. CONCLUSION: Dissolution of TME-HAP using our novel NSPS has the potential to provide a new treatment paradigm to enhance the management of cancer patients with poor prognosis.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Neoplasias Pulmonares , Humanos , Masculino , Animales , Ratones , Preparaciones Farmacéuticas , Fluorodesoxiglucosa F18 , Inmunoterapia , Alcanosulfonatos , Glucosa , Hidroxiapatitas , Microambiente Tumoral
3.
Pharmaceuticals (Basel) ; 15(6)2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35745661

RESUMEN

Background: Ergothioneine (ERGO) is a unique antioxidant and a rare amino acid available in fungi and various bacteria but not in higher plants or animals. Substantial research data indicate that ERGO is a physiological antioxidant cytoprotectant. Different from other antioxidants that need to breach the blood-brain barrier to enter the brain parenchyma, a specialized transporter called OCTN1 has been identified for transporting ERGO to the brain. Purpose: To assess whether consumption of ERGO can prevent the progress of Alzheimer's disease (AD) on young (4-month-old) 5XFAD mice. Methods and materials: Three cohorts of mice were tested in this study, including ERGO-treated 5XFAD, non-treated 5XFAD, and WT mice. After the therapy, the animals went through various behavioral experiments to assess cognition. Then, mice were scanned with PET imaging to evaluate the biomarkers associated with AD using [11C]PIB, [11C]ERGO, and [18F]FDG radioligands. At the end of imaging, the animals went through cardiac perfusion, and the brains were isolated for immunohistology. Results: Young (4-month-old) 5XFAD mice did not show a cognitive deficit, and thus, we observed modest improvement in the treated counterparts. In contrast, the response to therapy was clearly detected at the molecular level. Treating 5XFAD mice with ERGO resulted in reduced amyloid plaques, oxidative stress, and rescued glucose metabolism. Conclusions: Consumption of high amounts of ERGO benefits the brain. ERGO has the potential to prevent AD. This work also demonstrates the power of imaging technology to assess response during therapy.

4.
FEBS Lett ; 596(10): 1279-1289, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35100442

RESUMEN

L-ergothioneine (ERGO) is a potent antioxidant with cytoprotective effects. To study ERGO biodistribution and detect oxidative stress in vivo, we report an efficient and reproducible preparation of [11 C]-labeled ERGO PET radioligand based on protecting the histidine carboxylic group with a methyl ester. Overall, this new protection approach using methyl ester improved the chemical yield of a 4-step reaction from 14% to 24% compared to the previous report using t-butyl ester. The [11 C]CH3 methylation of the precursor provided the desired product with 55 ± 10% radiochemical purity and a molar activity of 450 ± 200 TBq·mmol-1 . The [11 C]ERGO radioligand was able to detect threshold levels of oxidative stress in a preclinical animal model of Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Ergotioneína , Enfermedad de Alzheimer/diagnóstico por imagen , Animales , Ésteres , Estrés Oxidativo , Tomografía de Emisión de Positrones/métodos , Distribución Tisular
5.
Sci Rep ; 11(1): 18450, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34531467

RESUMEN

Ergothioneine (ERGO) is a rare amino acid mostly found in fungi, including mushrooms, with recognized antioxidant activity to protect tissues from damage by reactive oxygen species (ROS) components. Prior to this publication, the biodistribution of ERGO has been performed solely in vitro using extracted tissues. The aim of this study was to develop a feasible chemistry for the synthesis of an ERGO PET radioligand, [11C]ERGO, to facilitate in vivo study. The radioligand probe was synthesized with identical structure to ERGO by employing an orthogonal protection/deprotection approach. [11C]methylation of the precursor was performed via [11C]CH3OTf to provide [11C]ERGO radioligand. The [11C]ERGO was isolated by RP-HPLC with a molar activity of 690 TBq/mmol. To demonstrate the biodistribution of the radioligand, we administered approximately 37 MBq/0.1 mL in 5XFAD mice, a mouse model of Alzheimer's disease via the tail vein. The distribution of ERGO in the brain was monitored using 90-min dynamic PET scans. The delivery and specific retention of [11C]ERGO in an LPS-mediated neuroinflammation mouse model was also demonstrated. For the pharmacokinetic study, the concentration of the compound in the serum started to decrease 10 min after injection while starting to distribute in other peripheral tissues. In particular, a significant amount of the compound was found in the eyes and small intestine. The radioligand was also distributed in several regions of the brain of 5XFAD mice, and the signal remained strong 30 min post-injection. This is the first time the biodistribution of this antioxidant and rare amino acid has been demonstrated in a preclinical mouse model in a highly sensitive and non-invasive manner.


Asunto(s)
Antioxidantes/farmacocinética , Ergotioneína/farmacocinética , Tomografía de Emisión de Positrones/métodos , Radiofármacos/farmacocinética , Animales , Antioxidantes/química , Radioisótopos de Carbono/química , Ergotioneína/química , Ratones , Ratones Endogámicos C57BL , Radiofármacos/química , Distribución Tisular
6.
Molecules ; 26(8)2021 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-33920113

RESUMEN

Promethazine, an antihistamine drug used in the clinical treatment of nausea, has been demonstrated the ability to bind Abeta in a transgenic mouse model of Alzheimer's disease. However, so far, all of the studies were performed in vitro using extracted tissues. In this work, we report the design and synthesis of a novel [11C]promethazine PET radioligand for future in vivo studies. The [11C]promethazine was isolated by RP-HPLC with radiochemical purity >95% and molar activity of 48 TBq/mmol. The specificity of the probe was demonstrated using human hippocampal tissues via autoradiography.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico , Encéfalo/diagnóstico por imagen , Prometazina/farmacología , Radiofármacos/farmacología , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Animales , Autorradiografía , Encéfalo/efectos de los fármacos , Humanos , Ratones , Placa Amiloide/diagnóstico , Placa Amiloide/diagnóstico por imagen , Placa Amiloide/patología , Tomografía de Emisión de Positrones , Prometazina/síntesis química , Prometazina/química , Radioquímica , Radiofármacos/síntesis química , Radiofármacos/química
7.
Gastroenterology ; 160(4): 1256-1268.e9, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33189701

RESUMEN

BACKGROUND & AIMS: Inflammation in the gastrointestinal tract may lead to the development of cancer. Dicarbonyl electrophiles, such as isolevuglandins (isoLGs), are generated from lipid peroxidation during the inflammatory response and form covalent adducts with amine-containing macromolecules. Thus, we sought to determine the role of dicarbonyl electrophiles in inflammation-associated carcinogenesis. METHODS: The formation of isoLG adducts was analyzed in the gastric tissues of patients infected with Helicobacter pylori from gastritis to precancerous intestinal metaplasia, in human gastric organoids, and in patients with colitis and colitis-associated carcinoma (CAC). The effect on cancer development of a potent scavenger of dicarbonyl electrophiles, 5-ethyl-2-hydroxybenzylamine (EtHOBA), was determined in transgenic FVB/N insulin-gastrin (INS-GAS) mice and Mongolian gerbils as models of H pylori-induced carcinogenesis and in C57BL/6 mice treated with azoxymethane-dextran sulfate sodium as a model of CAC. The effect of EtHOBA on mutations in gastric epithelial cells of H pylori-infected INS-GAS mice was assessed by whole-exome sequencing. RESULTS: We show increased isoLG adducts in gastric epithelial cell nuclei in patients with gastritis and intestinal metaplasia and in human gastric organoids infected with H pylori. EtHOBA inhibited gastric carcinoma in infected INS-GAS mice and gerbils and attenuated isoLG adducts, DNA damage, and somatic mutation frequency. Additionally, isoLG adducts were elevated in tissues from patients with colitis, colitis-associated dysplasia, and CAC as well as in dysplastic tumors of C57BL/6 mice treated with azoxymethane-dextran sulfate sodium. In this model, EtHOBA significantly reduced adduct formation, tumorigenesis, and dysplasia severity. CONCLUSIONS: Dicarbonyl electrophiles represent a link between inflammation and somatic genomic alterations and are thus key targets for cancer chemoprevention.


Asunto(s)
Transformación Celular Neoplásica/inmunología , Neoplasias Asociadas a Colitis/inmunología , Lípidos/inmunología , Lesiones Precancerosas/inmunología , Neoplasias Gástricas/inmunología , Animales , Bencilaminas/farmacología , Bencilaminas/uso terapéutico , Núcleo Celular/metabolismo , Transformación Celular Neoplásica/efectos de los fármacos , Neoplasias Asociadas a Colitis/microbiología , Neoplasias Asociadas a Colitis/patología , Neoplasias Asociadas a Colitis/prevención & control , Modelos Animales de Enfermedad , Células Epiteliales , Mucosa Gástrica/citología , Mucosa Gástrica/efectos de los fármacos , Mucosa Gástrica/inmunología , Mucosa Gástrica/patología , Gastritis/inmunología , Gastritis/microbiología , Gastritis/patología , Gerbillinae , Infecciones por Helicobacter/inmunología , Infecciones por Helicobacter/microbiología , Infecciones por Helicobacter/patología , Helicobacter pylori/inmunología , Helicobacter pylori/aislamiento & purificación , Humanos , Lípidos/antagonistas & inhibidores , Metaplasia/inmunología , Metaplasia/microbiología , Metaplasia/patología , Ratones , Ratones Transgénicos , Organoides , Lesiones Precancerosas/tratamiento farmacológico , Lesiones Precancerosas/microbiología , Lesiones Precancerosas/patología , Neoplasias Gástricas/microbiología , Neoplasias Gástricas/patología , Neoplasias Gástricas/prevención & control
9.
ACS Nano ; 14(1): 651-663, 2020 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-31851488

RESUMEN

The overexpression of immunomarker programmed cell death protein 1 (PD-1) and engagement of PD-1 to its ligand, PD-L1, are involved in the functional impairment of cluster of differentiation 8+ (CD8+) T cells, contributing to cancer progression. However, heterogeneities in PD-L1 expression and variabilities in biopsy-based assays render current approaches inaccurate in predicting PD-L1 status. Therefore, PD-L1 screening alone is not predictive of patient response to treatment, which motivates us to simultaneously detect multiple immunomarkers engaged in immune modulation. Here, we have developed multimodal probes, immunoactive gold nanostars (IGNs), that accurately detect PD-L1+ tumor cells and CD8+ T cells simultaneously in vivo, surpassing the limitations of current immunoimaging techniques. IGNs integrate the whole-body imaging of positron emission tomography with high sensitivity and multiplexing of Raman spectroscopy, enabling the dynamic tracking of both immunomarkers. IGNs also monitor response to immunotherapies in mice treated with combinatorial PD-L1 and CD137 agonists and distinguish responders from those nonresponsive to treatment. Our results showed a multifunctional nanoscale probe with capabilities that cannot be achieved with either modality alone, allowing multiplexed immunologic tumor profiling critical for predicting early response to immunotherapies.


Asunto(s)
Biomarcadores de Tumor/análisis , Oro/química , Inmunoterapia , Melanoma/diagnóstico por imagen , Melanoma/terapia , Nanopartículas del Metal/química , Imagen Óptica , Animales , Antígeno B7-H1/agonistas , Antígeno B7-H1/análisis , Antígeno B7-H1/genética , Biomarcadores de Tumor/agonistas , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Modelos Animales de Enfermedad , Ratones , Tamaño de la Partícula , Propiedades de Superficie , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/agonistas , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/análisis , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/genética
10.
ACS Omega ; 4(5): 9251-9261, 2019 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-31172046

RESUMEN

In vivo targeting and visualization of cyclooxygenase-1 (COX-1) using multimodal positron emission tomography/computed tomography imaging represents a unique opportunity for early detection and/or therapeutic evaluation of ovarian cancer because overexpression of COX-1 has been characterized as a pathologic hallmark of the initiation and progression of this disease. The furanone core is a common building block of many synthetic and natural products that exhibit a wide range of biological activities. We hypothesize that furanone-based COX-1 inhibitors can be designed as imaging agents for the early detection, delineation of tumor margin, and evaluation of treatment response of ovarian cancer. We report the discovery of 3-(4-fluorophenyl)-5,5-dimethyl-4-(p-tolyl)furan-2(5H)-one (FDF), a furanone-based novel COX-1-selective inhibitor that exhibits adequate in vivo stability, plasma half-life, and pharmacokinetic properties for use as an imaging agent. We describe a novel synthetic scheme in which a Lewis acid-catalyzed nucleophilic aromatic deiodo[18F]fluorination reaction is utilized for the radiosynthesis of [18F]FDF. [18F]FDF binds efficiently to COX-1 in vivo and enables sensitive detection of ovarian cancer in subcutaneous and peritoneal xenograft models in mice. These results provide the proof of principle for COX-1-targeted imaging of ovarian cancer and identify [18F]FDF as a promising lead compound for further preclinical and clinical development.

11.
Psychopharmacology (Berl) ; 235(10): 2897-2913, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30054675

RESUMEN

RATIONALE: Metabotropic glutamate receptors and muscarinic M4 receptors have been proposed as novel targets for various brain disorders, including schizophrenia. Both receptors are coupled to Go/i proteins and are expressed in brain circuits that are important in schizophrenia. Therefore, their mutual activation may be an effective treatment and allow minimizing the doses of ligands required for optimal activity. OBJECTIVES: In the present studies, subactive doses of mGlu4 and M4 activators (LSP4-2022 and VU152100, respectively) were administered to investigate the mutual interaction between mGlu4 and M4 receptors in animal models of schizophrenia. METHODS: The behavioral tests used were MK-801-induced hyperactivity, (±)-2.5-dimethoxy-4-iodoamphetamine hydrochloride (DOI)-induced head twitches, the modified forced swim test, and MK-801-induced disruptions of social interactions and novel object recognition. DOI-induced spontaneous excitatory postsynaptic currents (sEPSCs) in brain slices and positron emission tomography (PET) in were used to establish the ability of these compounds to modulate the glutamatergic and dopaminergic systems. Rotarod was used to assess putative adverse effects. RESULTS: The mutual administration of subactive doses of LSP4-2022 and VU152100 exerted similar antipsychotic-like efficacy in animals as observed for active doses of both compounds, indicating their additive actions. VU152100 inhibited the DOI-induced frequency (but not amplitude) of sEPSCs in the frontal cortex, confirming presynaptic regulation of glutamate release. Both compounds reversed amphetamine-induced decrease in D2 receptor levels in the striatum, as measured with [18F]fallypride. The compounds did not induce any motor impartments when measured in rotarod test. CONCLUSIONS: Based on our results, the simultaneous activation of M4 and mGlu4 receptors is beneficial in reversing MK-801- and amphetamine-induced schizophrenia-related changes in animals.


Asunto(s)
Antipsicóticos/uso terapéutico , Receptor Muscarínico M4/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/metabolismo , Anfetamina/toxicidad , Animales , Antipsicóticos/farmacología , Modelos Animales de Enfermedad , Maleato de Dizocilpina/toxicidad , Relación Dosis-Respuesta a Droga , Agonistas de Aminoácidos Excitadores/farmacología , Agonistas de Aminoácidos Excitadores/uso terapéutico , Masculino , Ratones , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Ácidos Fosfínicos/farmacología , Ácidos Fosfínicos/uso terapéutico , Receptor Muscarínico M4/agonistas , Receptores de Glutamato Metabotrópico/agonistas , Roedores , Esquizofrenia/inducido químicamente
12.
PLoS One ; 13(4): e0191299, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29698491

RESUMEN

OBJECTIVE: We have previously demonstrated that insulin signaling, through the downstream signaling kinase Akt, is a potent modulator of dopamine transporter (DAT) activity, which fine-tunes dopamine (DA) signaling at the synapse. This suggests a mechanism by which impaired neuronal insulin receptor signaling, a hallmark of diet-induced obesity, may contribute to impaired DA transmission. We tested whether a short-term (two-week) obesogenic high-fat (HF) diet could reduce striatal Akt activity, a marker of central insulin, receptor signaling and blunt striatal and dopaminergic network responsiveness to amphetamine (AMPH). METHODS: We examined the effects of a two-week HF diet on striatal DAT activity in rats, using AMPH as a probe in a functional magnetic resonance imaging (fMRI) assay, and mapped the disruption in AMPH-evoked functional connectivity between key dopaminergic targets and their projection areas using correlation and permutation analyses. We used phosphorylation of the Akt substrate GSK3α in striatal extracts as a measure of insulin receptor signaling. Finally, we confirmed the impact of HF diet on striatal DA D2 receptor (D2R) availability using [18F]fallypride positron emission tomography (PET). RESULTS: We found that rats fed a HF diet for only two weeks have reductions in striatal Akt activity, a marker of decreased striatal insulin receptor signaling and blunted striatal responsiveness to AMPH. HF feeding also reduced interactions between elements of the mesolimbic (nucleus accumbens-anterior cingulate) and sensorimotor circuits (caudate/putamen-thalamus-sensorimotor cortex) implicated in hedonic feeding. D2R availability was reduced in HF-fed animals. CONCLUSION: These studies support the hypothesis that central insulin signaling and dopaminergic neurotransmission are already altered after short-term HF feeding. Because AMPH induces DA efflux and brain activation, in large part via DAT, these findings suggest that blunted central nervous system insulin receptor signaling through a HF diet can impair DA homeostasis, thereby disrupting cognitive and reward circuitry involved in the regulation of hedonic feeding.


Asunto(s)
Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Dieta Alta en Grasa/efectos adversos , Dopamina/metabolismo , Obesidad/inducido químicamente , Obesidad/metabolismo , Anfetamina/farmacología , Animales , Encéfalo/patología , Insulina/metabolismo , Masculino , Neostriado/efectos de los fármacos , Neostriado/metabolismo , Neostriado/patología , Red Nerviosa/efectos de los fármacos , Obesidad/patología , Ratas , Ratas Sprague-Dawley , Receptores de Dopamina D2/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Tiempo
13.
Nat Commun ; 9(1): 248, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29339738

RESUMEN

Potentiating anti-tumor immunity by inducing tumor inflammation and T cell-mediated responses are a promising area of cancer therapy. Immunomodulatory agents that promote these effects function via a wide variety of mechanisms, including upregulation of antigen presentation pathways. Here, we show that major histocompatibility class-I (MHC-I) genes are methylated in human breast cancers, suppressing their expression. Treatment of breast cancer cell lines with a next-generation hypomethylating agent, guadecitabine, upregulates MHC-I expression in response to interferon-γ. In murine tumor models of breast cancer, guadecitabine upregulates MHC-I in tumor cells promoting recruitment of CD8+ T cells to the microenvironment. Finally, we show that MHC-I genes are upregulated in breast cancer patients treated with hypomethylating agents. Thus, the immunomodulatory effects of hypomethylating agents likely involve upregulation of class-I antigen presentation to potentiate CD8+ T cell responses. These strategies may be useful to potentiate anti-tumor immunity and responses to checkpoint inhibition in immune-refractory breast cancers.


Asunto(s)
Azacitidina/análogos & derivados , Neoplasias de la Mama/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/antagonistas & inhibidores , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Genes MHC Clase I/fisiología , Linfocitos T Citotóxicos/fisiología , Animales , Antineoplásicos/farmacología , Azacitidina/farmacología , Línea Celular Tumoral , ADN (Citosina-5-)-Metiltransferasa 1/genética , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Femenino , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Genes MHC Clase I/genética , Humanos , Neoplasias Mamarias Experimentales , Ratones , Regiones Promotoras Genéticas
14.
Mol Imaging Biol ; 20(2): 200-204, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28822038

RESUMEN

PURPOSE: The identification and targeting of biomarkers specific to prostate cancer (PCa) could improve its detection. Given the high expression of translocator protein (TSPO) in PCa, we investigated the use of [18F]VUIIS1008 (a novel TSPO-targeting radioligand) coupled with positron emission tomography (PET) to identify PCa in mice and to characterize their TSPO uptake. PROCEDURES: Ptenpc-/-, Trp53pc-/- prostate cancer-bearing mice (n = 9, 4-6 months old) were imaged in a 7T MRI scanner for lesion localization. Within 24 h, the mice were imaged using a microPET scanner for 60 min in dynamic mode following a retro-orbital injection of ~ 18 MBq [18F]VUIIS1008. Following imaging, tumors were harvested and stained with a TSPO antibody. Regions of interest (ROIs) were drawn around the tumor and muscle (hind limb) in the PET images. Time-activity curves (TACs) were recorded over the duration of the scan for each ROI. The mean activity concentrations between 40 and 60 min post radiotracer administration between tumor and muscle were compared. RESULTS: Tumor presence was confirmed by visual inspection of the MR images. The uptake of [18F]VUIIS1008 in the tumors was significantly higher (p < 0.05) than that in the muscle, where the percent injected dose per unit volume for tumor was 7.1 ± 1.6 % ID/ml and that of muscle was < 1 % ID/ml. In addition, positive TSPO expression was observed in tumor tissue analysis. CONCLUSIONS: The foregoing preliminary data suggest that TSPO may be a useful biomarker of PCa. Therefore, using TSPO-targeting PET ligands, such as [18F]VUIIS1008, may improve PCa detectability and characterization.


Asunto(s)
Tomografía de Emisión de Positrones , Neoplasias de la Próstata/diagnóstico por imagen , Receptores de GABA/metabolismo , Animales , Modelos Animales de Enfermedad , Radioisótopos de Flúor/administración & dosificación , Imagen por Resonancia Magnética , Masculino , Ratones , Neoplasias de la Próstata/patología , Tomografía Computarizada por Rayos X
15.
J Med Chem ; 60(12): 5072-5085, 2017 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-28530802

RESUMEN

Preclinical evidence in support of the potential utility of mGlu5 NAMs for the treatment of a variety of psychiatric and neurodegenerative disorders is extensive, and multiple such molecules have entered clinical trials. Despite some promising results from clinical studies, no small molecule mGlu5 NAM has yet to reach market. Here we present the discovery and evaluation of N-(5-fluoropyridin-2-yl)-6-methyl-4-(pyrimidin-5-yloxy)picolinamide (27, VU0424238), a compound selected for clinical evaluation. Compound 27 is more than 900-fold selective for mGlu5 versus the other mGlu receptors, and binding studies established a Ki value of 4.4 nM at a known allosteric binding site. Compound 27 had a clearance of 19.3 and 15.5 mL/min/kg in rats and cynomolgus monkeys, respectively. Imaging studies using a known mGlu5 PET ligand demonstrated 50% receptor occupancy at an oral dose of 0.8 mg/kg in rats and an intravenous dose of 0.06 mg/kg in baboons.


Asunto(s)
Aminopiridinas/farmacología , Evaluación Preclínica de Medicamentos/métodos , Ácidos Picolínicos/farmacología , Receptor del Glutamato Metabotropico 5/metabolismo , Relación Estructura-Actividad , Regulación Alostérica , Aminopiridinas/síntesis química , Animales , Técnicas de Química Sintética , Células HEK293 , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Macaca fascicularis , Masculino , Ratones Endogámicos , Ácidos Picolínicos/síntesis química , Ratas Sprague-Dawley , Receptor del Glutamato Metabotropico 5/agonistas , Distribución Tisular
16.
Bioorg Med Chem Lett ; 27(4): 941-943, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28094184

RESUMEN

In vivo evaluation of [18F]BMS-754807 binding in mice and rats using microPET and biodistribution methods is described herein. The radioligand shows consistent binding characteristics, in vivo, in both species. Early time frames of the microPET images and time activity curves of brain indicate poor penetration of the tracer across the blood brain barrier (BBB) in both species. However, microPET experiments in mice and rats show high binding of the radioligand outside the brain to heart, pancreas and muscle, the organs known for higher expression of IGF1R/1R. Biodistribution analysis 2h after injection of [18F]BMS-754807 in rats show negligible [18F]defluorination as reflected by the low bone uptake and clearance from blood. Overall, the data indicate that [18F]BMS-754807 can potentially be a radiotracer for the quantification of IGF1R/IR outside the brain using PET.


Asunto(s)
Tomografía de Emisión de Positrones/métodos , Pirazoles/farmacocinética , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/metabolismo , Triazinas/farmacocinética , Animales , Radioisótopos de Flúor/metabolismo , Xenoinjertos , Humanos , Ratones , Ensayo de Unión Radioligante , Ratas
17.
Sci Rep ; 6: 33926, 2016 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-27671553

RESUMEN

Ewing sarcoma is a bone and soft-tissue tumor that depends on the activity of the EWS-FLI1 transcription factor for cell survival. Although a number of compounds have been shown to inhibit EWS-FLI1 in vitro, a clinical EWS-FLI1-directed therapy has not been achieved. One problem plaguing drug development efforts is the lack of a suitable, non-invasive, pharmacodynamic marker of EWS-FLI1 activity. Here we show that 18F-FLT PET (18F- 3'-deoxy-3'-fluorothymidine positron emission tomography) reflects EWS-FLI1 activity in Ewing sarcoma cells both in vitro and in vivo. 18F-FLT is transported into the cell by ENT1 and ENT2, where it is phosphorylated by TK1 and trapped intracellularly. In this report, we show that silencing of EWS-FLI1 with either siRNA or small-molecule EWS-FLI1 inhibitors suppressed the expression of ENT1, ENT2, and TK1 and thus decreased 18F-FLT PET activity. This effect was not through a generalized loss in viability or metabolic suppression, as there was no suppression of 18F-FDG PET activity and no suppression with chemotherapy. These results provide the basis for the clinical translation of 18F-FLT as a companion biomarker of EWS-FLI1 activity and a novel diagnostic imaging approach for Ewing sarcoma.

18.
Mol Imaging Biol ; 18(1): 18-23, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25971659

RESUMEN

PURPOSE: Alanine-serine-cysteine transporter 2 (ASCT2) expression has been demonstrated as a promising lung cancer biomarker. (2S,4R)-4-[(18)F]Fluoroglutamine (4-[(18)F]fluoro-Gln) positron emission tomography (PET) was evaluated in preclinical models of non-small cell lung cancer as a quantitative, non-invasive measure of ASCT2 expression. PROCEDURES: In vivo microPET studies of 4-[(18)F]fluoro-Gln uptake were undertaken in human cell line xenograft tumor-bearing mice of varying ASCT2 levels, followed by a genetically engineered mouse model of epidermal growth factor receptor (EGFR)-mutant lung cancer. The relationship between a tracer accumulation and ASCT2 levels in tumors was evaluated by IHC and immunoblotting. RESULT: 4-[(18)F]Fluoro-Gln uptake, but not 2-deoxy-2-[(18)F]fluoro-D-glucose, correlated with relative ASCT2 levels in xenograft tumors. In genetically engineered mice, 4-[(18)F]fluoro-Gln accumulation was significantly elevated in lung tumors, relative to normal lung and cardiac tissues. CONCLUSIONS: 4-[(18)F]Fluoro-Gln PET appears to provide a non-invasive measure of ASCT2 expression. Given the potential of ASCT2 as a lung cancer biomarker, this and other tracers reflecting ASCT2 levels could emerge as precision imaging diagnostics in this setting.


Asunto(s)
Sistema de Transporte de Aminoácidos ASC/metabolismo , Glutamina/análogos & derivados , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/metabolismo , Tomografía de Emisión de Positrones/métodos , Animales , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Neoplasias del Colon/diagnóstico por imagen , Neoplasias del Colon/metabolismo , Receptores ErbB/genética , Femenino , Glutamina/metabolismo , Humanos , Masculino , Ratones Desnudos , Antígenos de Histocompatibilidad Menor , Mutación/genética , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Neuropsychopharmacology ; 40(3): 755-65, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25241804

RESUMEN

Allosteric modulators of the metabotropic glutamate receptor subtype 5 (mGlu5) have exciting potential as therapeutic agents for multiple brain disorders. Translational studies with mGlu5 modulators have relied on mGlu5 allosteric site positron emission tomography (PET) radioligands to assess receptor occupancy in the brain. However, recent structural and modeling studies suggest that closely related mGlu5 allosteric modulators can bind to overlapping but not identical sites, which could complicate interpretation of in vivo occupancy data, even when PET ligands and drug leads are developed from the same chemical scaffold. We now report that systemic administration of the novel mGlu5 positive allosteric modulator VU0092273 displaced the structurally related mGlu5 PET ligand, [(18)F]FPEB, with measures of in vivo occupancy that closely aligned with its in vivo efficacy. In contrast, a close analog of VU0092273 and [(18)F]FPEB, VU0360172, provided robust efficacy in rodent models in the absence of detectable occupancy. Furthermore, a structurally unrelated mGlu5 negative allosteric modulator, VU0409106, displayed measures of in vivo occupancy that correlated well with behavioral effects, despite the fact that VU0409106 is structurally unrelated to [(18)F]FPEB. Interestingly, all three compounds inhibit radioligand binding to the prototypical MPEP/FPEB allosteric site in vitro. However, VU0092273 and VU0409106 bind to this site in a fully competitive manner, whereas the interaction of VU0360172 is noncompetitive. Thus, while close structural similarity between PET ligands and drug leads does not circumvent issues associated with differential binding to a given target, detailed molecular pharmacology analysis accurately predicts utility of ligand pairs for in vivo occupancy studies.


Asunto(s)
Regulación Alostérica/efectos de los fármacos , Benzamidas/farmacología , Niacinamida/análogos & derivados , Piperidinas/farmacología , Receptor del Glutamato Metabotropico 5/efectos de los fármacos , Tiazoles/farmacología , Anfetamina/farmacología , Animales , Calcio/metabolismo , Cerebelo/efectos de los fármacos , Cerebelo/metabolismo , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Locomoción/efectos de los fármacos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Niacinamida/farmacología , Tomografía de Emisión de Positrones , Ensayo de Unión Radioligante , Ratas , Receptor del Glutamato Metabotropico 5/metabolismo , Relación Estructura-Actividad
20.
Nucl Med Biol ; 42(3): 269-73, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25533764

RESUMEN

BACKGROUND: In previous work, we demonstrated the presence of hydroxyapetite (type II microcalcification), HAP, in triple negative MDA-MB-231 breast cancer cells. We used (18)F-NaF to detect these types of cancers in mouse models as the free fluorine, (18)F(-), binds to HAP similar to bone uptake. In this work, we investigate other bone targeting agents and techniques including (99m)Tc-MDP SPECT and Osteosense 750EX FMT imaging as alternatives for breast cancer diagnosis via targeting HAP within the tumor microenvironment. METHODS: Thirteen mice were injected subcutaneously in the right flank with 10(6) MDA-MB-231 cells. When the tumor size reached ~0.6 cm(3), mice (n=9) were injected with ~37 MBq of (99m)Tc-MDP intravenously and then imaged one hour later in a NanoSPECT/CT or injected intravenously with 4 nmol/g of Osetosense 750EX and imaged 24 hours later in an FMT (n=4). The imaging probe concentration in the tumor was compared to that of muscle. Following SPECT imaging, the tumors were harvested, sectioned into 10 µm slices, and underwent autoradiography or von Kossa staining to correlate (99m)Tc-MDP binding with HAP distribution within the tumor. The SPECT images were normalized to the injected dose and regions-of-interest (ROIs) were drawn around bone, tumor, and muscle to obtain the radiotracer concentration in these regions in units of percent injected dose per unit volume. ROIs were drawn around bone and tumor in the FMT images as no FMT signal was observed in normal muscle. RESULTS: Uptake of (99m)Tc-MDP was observed in the bone and tumor with little or no uptake in the muscle with concentrations of 11.34±1.46 (mean±SD), 2.22±0.95, and 0.05±0.04%ID/cc, respectively. Uptake of Osteosense 750EX was also observed in the bone and tumor with concentrations of 0.35±0.07 (mean±SD) and 0.04±0.01picomoles, respectively. No FMT signal was observed in the normal muscle. There was no significant difference in the bone-to-tumor ratio between the two modalities (5.1±2.3 for SPECT and 8.8±2.2 for FMT) indicating that there is little difference in tumor uptake between these two agents. CONCLUSION: This study provides evidence of the accessibility of HAP within the breast tumor microenvironment as an in vivo imaging target for bone-seeking agents. SPECT imaging using (99m)Tc-MDP can be rapidly translated to the clinic. FMT imaging using Osteosense 750EX is not currently approved for clinical use and is limited to animal research.


Asunto(s)
Neoplasias de la Mama/complicaciones , Neoplasias de la Mama/diagnóstico por imagen , Calcinosis/complicaciones , Imagen Óptica , Medronato de Tecnecio Tc 99m , Tomografía Computarizada de Emisión de Fotón Único , Animales , Huesos/diagnóstico por imagen , Línea Celular Tumoral , Humanos , Ratones , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...