Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Mol Genet Metab Rep ; 39: 101083, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38694234

RESUMEN

Selective screening for inherited metabolic disorders (IMD) began in Cyprus in 1990. Over the last thirty-three years 7388 patients were investigated for IMD and 200 diagnoses were made (diagnostic yield 2.7%). The existence of a single laboratory of Biochemical Genetics for the whole island facilitated the creation of a national registry for IMD. The minimal prevalence of IMD in Cyprus is 53.3 cases per 100,000 live births. The most common group are disorders of amino acid metabolism (41.0%), followed by disorders of carbohydrate metabolism (16.5%), disorders of complex molecule degradation (16.5%), mitochondrial disorders (10.5%) and disorders of vitamin and co-factor metabolism (5.5%). Hyperphenylalaninaemia is the most common IMD (14.0%) followed by galactosaemia (7.0%), glutaric aciduria type I (5.5%) and MSUD (4.0%). Some disorders were found to have a relatively high incidence in specific communities, for example Sandhoff disease among the Cypriot Maronites and GM1 gangliosidosis in one particular area of the island. Other disorders were found to have a relatively higher overall incidence, compared to other Caucasian populations, for example galactosaemia, glutaric aciduria type I and MSUD, while fatty acid oxidation defects, Gaucher disease and classic PKU were found to have a relatively lower incidence. Molecular characterization of selected disorders revealed many novel genetic variants, specific to the Cypriot population.

2.
Mol Biol Rep ; 51(1): 590, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38683245

RESUMEN

BACKGROUND: Boucher Neuhäuser Syndrome (BNS) is a rare disease with autosomal recessive inheritance defined by the classical triad; early-onset ataxia, hypogonadism and chorioretinal dystrophy. CASE PRESENTATION: We present two siblings diagnosed with BNS at midlife, identified with homozygous state of a novel PNPLA6 missense mutation. One healthy sibling and the mother were heterozygous carriers of the mutation. The proband presented with the classical triad and the other sibling presented with visual problems at first. The proband was referred to our department by a private Neurologist, in early adulthood, because of hypogonadism, cerebellar ataxia, axonal neuropathy, and chorioretinal dystrophy for further evaluation. The sibling was referred to our department for evaluation, at childhood, due to visual problems. Later, the patient displayed the triad of ataxia, hypogonadotropic hypogonadism, and chorioretinal dystrophy. The unusual medical history of the two siblings led to further examinations and eventually the diagnosis of the first BNS cases in Cyprus. WES-based ataxia in silico gene panel analysis revealed 15 genetic variants and further filtering analysis revealed the PNPLA6 c.3323G > A variant. Segregation analysis in the family with Sanger sequencing confirmed the PNPLA6 homozygous variant c.3323G > A, p.Arg1108Gln in exon 29. CONCLUSIONS: This highlights the importance of considering rare inherited causes of visual loss, spinocerebellar ataxia, or/and HH in a neurology clinic and the significant role of genetic sequencing in the diagnostic process.


Asunto(s)
Aciltransferasas , Ataxia Cerebelosa , Hipogonadismo , Distrofias Retinianas , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Aciltransferasas/genética , Ataxia Cerebelosa/genética , Hipogonadismo/genética , Mutación Missense/genética , Linaje , Fosfolipasas/genética , Distrofias Retinianas/genética , Hermanos , Ataxias Espinocerebelosas/genética
3.
Front Neurol ; 14: 1241195, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37799281

RESUMEN

Introduction: Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder caused by pathogenic variants in the SMN1 gene. The majority of SMA patients harbor a homozygous deletion of SMN1 exon 7 (95%). Heterozygosity for a conventional variant and a deletion is rare (5%) and not easily detected, due to the highly homologous SMN2 gene interference. SMN2 mainly produces a truncated non-functional protein (SMN-d7) instead of the full-length functional (SMN-FL). We hereby report a novel SMN1 splicing variant in an infant with severe SMA. Methods: MLPA was used for SMN1/2 exon dosage determination. Sanger sequencing approaches and long-range PCR were employed to search for an SMN1 variant. Conventional and improved Real-time PCR assays were developed for the qualitative and quantitative SMN1/2 RNA analysis. Results: The novel SMN1 splice-site variant c.835-8_835-5delinsG, was identified in compound heterozygosity with SMN1 exons 7/8 deletion. RNA studies revealed complete absence of SMN1 exon 7, thus confirming a disruptive effect of the variant on SMN1 splicing. No expression of the functional SMN1-FL transcript, remarkable expression of the SMN1-d7 and increased levels of the SMN2-FL/SMN2-d7 transcripts were observed. Discussion: We verified the occurrence of a non-deletion SMN1 variant and supported its pathogenicity, thus expanding the SMN1 variants spectrum. We discuss the updated SMA genetic findings in the Cypriot population, highlighting an increased percentage of intragenic variants compared to other populations.

4.
Front Endocrinol (Lausanne) ; 14: 1156616, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324257

RESUMEN

Objective: The study aimed to identify the pathogenic status of p.Gln319Ter (NM_000500.7: c.955C>T) variant when inherited in a single CYP21A2 gene (bimodular RCCX haplotype) and to discriminate between a non-causing congenital adrenal hyperplasia (CAH) allele when inherited in a duplicated and functional CYP21A2 gene context (trimodular RCCX haplotype). Methods: 38 females and 8 males with hyperandrogenemia, previously screened by sequencing and identified as carriers for the pathogenic p.Gln319Ter, were herein tested by multiplex ligation-dependent probe amplification (MLPA) and a real-time PCR Copy number Variation (CNV) assay. Results: Both MLPA and real-time PCR CNV analyses confirmed a bimodular and pathogenic RCCX haplotype with a single CYP21A2 in 19/46 (41.30%) p.Gln319Ter carriers and who in parallel all shared elevated 17-OHP levels. The remaining 27 individuals that also carried the p.Gln319Ter exhibited low 17-OHP levels as a result of their carriership of a duplicated CYP21A2 with a trimodular RCCX haplotype. Interestingly, all of these individuals also carried in linkage disequilibrium with p.Gln319Ter two single nucleotide polymorphisms, the c.293-79G>A (rs114414746) in intron 2 and the c.*12C>T (rs150697472) in the 3'-UTR. Therefore, these variants can be used to distinguish between pathogenic and non-pathogenic genomic contexts of the c.955T (p.Gln319) in the genetic diagnosis of congenital adrenal hyperplasia (CAH). Conclusion: The employed methodologies identified a considerable number of individuals with non-pathogenic p.Gln319Ter from the individuals that typically carry the pathogenic p.Gln319Ter in a single CYP21A2. Therefore, it is extremely important the detection of such haplotypes for the prenatal diagnosis, treatment and genetic counseling in patients with CAH.


Asunto(s)
Hiperplasia Suprarrenal Congénita , Masculino , Embarazo , Femenino , Humanos , Hiperplasia Suprarrenal Congénita/genética , Hiperplasia Suprarrenal Congénita/diagnóstico , Esteroide 21-Hidroxilasa/genética , Variaciones en el Número de Copia de ADN , Haplotipos , Heterocigoto
5.
Mol Cytogenet ; 16(1): 8, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37217936

RESUMEN

BACKGROUND: Hereditary multiple exostoses (HME) is an autosomal dominant skeletal disorder characterized by the development of multiple, circumscript and usually symmetric bony protuberances called osteochondromas. Most HME are caused by EXT1 and EXT2 loss of function mutations. Most pathogenic mutations are nonsense followed by missense mutations and deletions. CASE PRESENTATION: Here we report on a patient with a rare and complex genotype resulting in a typical HME phenotype. Initial point mutation screening in EXT1 and EXT2 genes by Sanger sequencing did not reveal any pathogenic variants. The patient along with the healthy parents was subsequently referred for karyotype and array-Comparative Genomic Hybridization (CGH) analyses. Chromosomal analysis revealed two independent de novo apparently balanced rearrangements: a balanced translocation between the long arms of chromosomes 2 and 3 at breakpoints 2q22 and 3q13.2 and a pericentric inversion with breakpoints at 8p23.1q24.1. Both breakpoints were confirmed by Fluorescence In Situ Hybridization (FISH). Subsequently, array-CGH revealed a novel heterozygous deletion within the EXT1 gene at one of the inversion breakpoints, rendering the inversion unbalanced. The mode of inheritance, as well as the size of the deletion were further investigated by Quantitative Real-time PCR (qPCR), defining the deletion as de novo and of 3.1 kb in size, removing exon 10 of EXT1. The inversion in combination with the 8p23.1 deletion most likely abolishes the transcription of EXT1 downstream of exon 10 hence resulting in a truncated protein. CONCLUSIONS: The identification of a rare and novel genetic cause of HME, highlights the importance of additional comprehensive investigation of patients with typical clinical manifestations, even when EXT1 and EXT2 mutation analysis is negative.

6.
Hum Mol Genet ; 31(24): 4131-4142, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-35861666

RESUMEN

KBG syndrome (KBGS) is characterized by distinctive facial gestalt, short stature and variable clinical findings. With ageing, some features become more recognizable, allowing a differential diagnosis. We aimed to better characterize natural history of KBGS. In the context of a European collaborative study, we collected the largest cohort of KBGS patients (49). A combined array- based Comparative Genomic Hybridization and next generation sequencing (NGS) approach investigated both genomic Copy Number Variants and SNVs. Intellectual disability (ID) (82%) ranged from mild to moderate with severe ID identified in two patients. Epilepsy was present in 26.5%. Short stature was consistent over time, while occipitofrontal circumference (median value: -0.88 SD at birth) normalized over years. Cerebral anomalies, were identified in 56% of patients and thus represented the second most relevant clinical feature reinforcing clinical suspicion in the paediatric age when short stature and vertebral/dental anomalies are vague. Macrodontia, oligodontia and dental agenesis (53%) were almost as frequent as skeletal anomalies, such as brachydactyly, short fifth finger, fifth finger clinodactyly, pectus excavatum/carinatum, delayed bone age. In 28.5% of individuals, prenatal ultrasound anomalies were reported. Except for three splicing variants, leading to a premature termination, variants were almost all frameshift. Our results, broadening the spectrum of KBGS phenotype progression, provide useful tools to facilitate differential diagnosis and improve clinical management. We suggest to consider a wider range of dental anomalies before excluding diagnosis and to perform a careful odontoiatric/ear-nose-throat (ENT) evaluation in order to look for even submucosal palate cleft given the high percentage of palate abnormalities. NGS approaches, following evidence of antenatal ultrasound anomalies, should include ANKRD11.


Asunto(s)
Anomalías Múltiples , Enfermedades del Desarrollo Óseo , Enanismo , Discapacidad Intelectual , Anomalías Dentarias , Embarazo , Femenino , Humanos , Facies , Anomalías Dentarias/genética , Enfermedades del Desarrollo Óseo/genética , Anomalías Múltiples/genética , Anomalías Múltiples/diagnóstico , Discapacidad Intelectual/genética , Discapacidad Intelectual/diagnóstico , Hibridación Genómica Comparativa , Proteínas Represoras/genética , Fenotipo , Enanismo/genética , Pueblo Europeo
7.
Eur J Med Genet ; 65(9): 104557, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35779834

RESUMEN

Vascular Ehlers-Danlos syndrome (vEDS) is a rare genetic disorder clinically characterized by vascular, intestinal and uterine fragility and caused by heterozygous pathogenic variants in the COL3A1 gene. Management of patients with vEDS is difficult due to the unpredictability of the events and clear recommendations on the care of adults and children with vEDS are lacking. Therefore, we aimed to collect data on the current strategy of surveillance and monitoring of vEDS patients by expert centers in continental Europe and Great Britain, as a first step towards a consensus statement. A survey on the clinical management of vEDS was sent to all members of the Medium Sized Artery (MSA) Working Group of the European Reference Network for Rare Vascular Diseases (VASCERN) and other expert centers. All experts endorse the importance of monitoring patients with vEDS. Despite the absence of evidence based guidelines monitoring is considered in almost all countries, but screening intervals and modalities used for monitoring may differ among centers. There is a need for more prospective multicenter studies to define proper guidelines.


Asunto(s)
Síndrome de Ehlers-Danlos , Adulto , Niño , Colágeno Tipo III/genética , Síndrome de Ehlers-Danlos/diagnóstico , Síndrome de Ehlers-Danlos/genética , Síndrome de Ehlers-Danlos/patología , Europa (Continente)/epidemiología , Humanos , Estudios Prospectivos , Enfermedades Raras/genética
8.
Artículo en Inglés | MEDLINE | ID: mdl-35483874

RESUMEN

Poland syndrome is a rare developmental disorder characterized by unilateral, complete or partial, absence of the pectoralis major (and often minor) muscle, accompanied with ipsilateral hand malformations. To date, no clear genetic cause has been associated with Poland syndrome, although familial cases have been reported. We report the employment of trio exome investigation and the identification of a heterozygous de novo pathogenic variant in the SFMBT1 gene, a transcription factor associated with transcriptional repression during development, in a 14-yr-old boy with Poland syndrome. We further demonstrate by means of cDNA sequencing and western blot analysis that this variant results in SFMBT1 exon 10 skipping and a lower concentration of the SFMBT1 wild-type protein. To our knowledge, the heterozygous pathogenic SFMBT1 variant identified in association with this condition is novel as it has not been elsewhere described in the literature and it can be incorporated to the limited reported cases published.


Asunto(s)
Síndrome de Poland , Adolescente , Exoma , Heterocigoto , Humanos , Masculino , Síndrome de Poland/genética , Proteínas Represoras/genética , Factores de Transcripción/genética , Secuenciación del Exoma
9.
Neurology ; 98(20): e2046-e2059, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35314505

RESUMEN

BACKGROUND AND OBJECTIVES: KCNC2 encodes Kv3.2, a member of the Shaw-related (Kv3) voltage-gated potassium channel subfamily, which is important for sustained high-frequency firing and optimized energy efficiency of action potentials in the brain. The objective of this study was to analyze the clinical phenotype, genetic background, and biophysical function of disease-associated Kv3.2 variants. METHODS: Individuals with KCNC2 variants detected by exome sequencing were selected for clinical, further genetic, and functional analysis. Cases were referred through clinical and research collaborations. Selected de novo variants were examined electrophysiologically in Xenopus laevis oocytes. RESULTS: We identified novel KCNC2 variants in 18 patients with various forms of epilepsy, including genetic generalized epilepsy (GGE), developmental and epileptic encephalopathy (DEE) including early-onset absence epilepsy, focal epilepsy, and myoclonic-atonic epilepsy. Of the 18 variants, 10 were de novo and 8 were classified as modifying variants. Eight drug-responsive patients became seizure-free using valproic acid as monotherapy or in combination, including severe DEE cases. Functional analysis of 4 variants demonstrated gain of function in 3 severely affected DEE cases and loss of function in 1 case with a milder phenotype (GGE) as the underlying pathomechanisms. DISCUSSION: These findings implicate KCNC2 as a novel causative gene for epilepsy and emphasize the critical role of KV3.2 in the regulation of brain excitability.


Asunto(s)
Epilepsia Generalizada , Epilepsia , Epilepsia/genética , Epilepsia Generalizada/genética , Humanos , Fenotipo , Convulsiones/genética , Canales de Potasio Shaw/genética , Secuenciación del Exoma
10.
Cell Biosci ; 12(1): 29, 2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35277195

RESUMEN

BACKGROUND: Spastic ataxias (SAs) encompass a group of rare and severe neurodegenerative diseases, characterized by an overlap between ataxia and spastic paraplegia clinical features. They have been associated with pathogenic variants in a number of genes, including GBA2. This gene codes for the non-lysososomal ß-glucosylceramidase, which is involved in sphingolipid metabolism through its catalytic role in the degradation of glucosylceramide. However, the mechanism by which GBA2 variants lead to the development of SA is still unclear. METHODS: In this work, we perform next-generation RNA-sequencing (RNA-seq), in an attempt to discover differentially expressed genes (DEGs) in lymphoblastoid, fibroblast cell lines and induced pluripotent stem cell-derived neurons derived from patients with SA, homozygous for the GBA2 c.1780G > C missense variant. We further exploit DEGs in pathway analyses in order to elucidate candidate molecular mechanisms that are implicated in the development of the GBA2 gene-associated SA. RESULTS: Our data reveal a total of 5217 genes with significantly altered expression between patient and control tested tissues. Furthermore, the most significant extracted pathways are presented and discussed for their possible role in the pathogenesis of the disease. Among them are the oxidative stress, neuroinflammation, sphingolipid signaling and metabolism, PI3K-Akt and MAPK signaling pathways. CONCLUSIONS: Overall, our work examines for the first time the transcriptome profiles of GBA2-associated SA patients and suggests pathways and pathway synergies that could possibly have a role in SA pathogenesis. Lastly, it provides a list of DEGs and pathways that could be further validated towards the discovery of disease biomarkers.

11.
Genes (Basel) ; 14(1)2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36672823

RESUMEN

Familial apparently balanced translocations (ABTs) are usually not associated with a phenotype; however, rarely, ABTs segregate with discordant phenotypes in family members carrying identical rearrangements. The current study was a follow-up investigation of four familial ABTs, where whole exome sequencing (WES) was implemented as a diagnostic tool to identify the underlying genetic aetiology of the patients' phenotypes. Data were analysed using an in-house bioinformatics pipeline alongside VarSome Clinical. WES findings were validated with Sanger sequencing, while the impact of splicing and missense variants was assessed by reverse-transcription PCR and in silico tools, respectively. Novel candidate variants were identified in three families. In family 1, it was shown that the de novo pathogenic STXBP1 variant (NM_003165.6:c.1110+2T>G) affected splicing and segregated with the patient's phenotype. In family 2, a likely pathogenic TUBA1A variant (NM_006009.4:c.875C>T, NP_006000.2:p.(Thr292Ile)) could explain the patient's symptoms. In family 3, an SCN1A variant of uncertain significance (NM_006920.6:c.5060A>G, NP_008851.3:p.(Glu1687Gly)) required additional evidence to sufficiently support causality. This first report of WES application in familial ABT carriers with discordant phenotypes supported our previous findings describing such rearrangements as coincidental. Thus, WES can be recommended as a complementary test to find the monogenic cause of aberrant phenotypes in familial ABT carriers.


Asunto(s)
Mutación Missense , Translocación Genética , Humanos , Secuenciación del Exoma , Linaje , Fenotipo
12.
Front Genet ; 12: 746101, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34868216

RESUMEN

The neuronal ceroid lipofuscinoses (NCLs), also known as Batten disease, are a group of autosomal recessive lysosomal storage disorders that are characterized by neurodegeneration, progressive cognitive decline, motor impairment, ataxia, loss of vision, seizures, and premature death. To date, pathogenic variants in more than 13 genes have been associated with NCLs. CLN6 encodes an endoplasmic reticulum non-glycosylated transmembrane protein, which is involved in lysosomal acidification. Mutations in CLN6 cause late-infantile juvenile NCL (JNCL) adult-onset NCL, and Kufs disease. Members from two available families with JNCL were clinically evaluated, and samples were collected from consenting individuals. The molecular investigation was performed by whole-exome sequencing, Sanger sequencing, and family segregation analysis. Furthermore, in silico prediction analysis and structural modeling of the identified CLN6 variants were performed. We report clinical and genetic findings of three patients from two Greek-Cypriot families (families 915 and 926) with JNCL. All patients were males, and the first symptoms appeared at the age of 6 years. The proband of family 926 presented with loss of motor abilities, ataxia, spasticity, seizure, and epilepsy. The proband of family 915 had ataxia, spasticity, dysarthria, dystonia, and intellectual disability. Both probands did not show initial signs of vision and/or hearing loss. Molecular analysis of family 926 revealed two CLN6 biallelic variants: the novel, de novo p.Tyr295Cys and the known p.Arg136His variants. In family 915, both patients were homozygous for the p.Arg136His CLN6 variant. Prediction analysis of the two CLN6 variants characterized them as probably damaging and disease-causing. Structural modeling of the variants predicted that they probably cause protein structural differentiation. In conclusion, we describe two unrelated Cypriot families with JNCL. Both families had variants in the CLN6 gene; however, they presented with slightly different symptoms, and notably none of the patients has loss of vision. In silico prediction and structural analyses indicate that both variants are most likely pathogenic.

13.
Front Endocrinol (Lausanne) ; 12: 745048, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34630334

RESUMEN

Background: Central precocious puberty (CPP) due to premature activation of GnRH secretion results in early epiphyseal fusion and to a significant compromise in the achieved final adult height. Currently, few genetic determinants of children with CPP have been described. In this translational study, rare sequence variants in MKRN3, DLK1, KISS1, and KISS1R genes were investigated in patients with CPP. Methods: Fifty-four index girls and two index boys with CPP were first tested by Sanger sequencing for the MKRN3 gene. All children found negative (n = 44) for the MKRN3 gene were further investigated by whole exome sequencing (WES). In the latter analysis, the status of variants in genes known to be related with pubertal timing was compared with an in-house Cypriot control cohort (n = 43). The identified rare variants were initially examined by in silico computational algorithms and confirmed by Sanger sequencing. Additionally, a genetic network for the MKRN3 gene, mimicking a holistic regulatory depiction of the crosstalk between MKRN3 and other genes was designed. Results: Three previously described pathogenic MKRN3 variants located in the coding region of the gene were identified in 12 index girls with CPP. The most prevalent pathogenic MKRN3 variant p.Gly312Asp was exclusively found among the Cypriot CPP cohort, indicating a founder effect phenomenon. Seven other CPP girls harbored rare likely pathogenic upstream variants in the MKRN3. Among the 44 CPP patients submitted to WES, nine rare DLK1 variants were identified in 11 girls, two rare KISS1 variants in six girls, and two rare MAGEL2 variants in five girls. Interestingly, the frequent variant rs10407968 (p.Gly8Ter) of the KISS1R gene appeared to be less frequent in the cohort of patients with CPP. Conclusion: The results of the present study confirm the importance of the MKRN3-imprinted gene in genetics of CPP and its key role in pubertal timing. Overall, the results of the present study have emphasized the importance of an approach that aligns genetics and clinical aspects, which is necessary for the management and treatment of CPP.


Asunto(s)
Pubertad Precoz/genética , Encefalopatías/epidemiología , Encefalopatías/genética , Proteínas de Unión al Calcio/genética , Niño , Preescolar , Estudios de Cohortes , Chipre/epidemiología , Análisis Mutacional de ADN , Femenino , Frecuencia de los Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Kisspeptinas/genética , Masculino , Proteínas de la Membrana/genética , Mutación , Pubertad Precoz/epidemiología , Receptores de Kisspeptina-1/genética , Ubiquitina-Proteína Ligasas/genética , Secuenciación del Exoma
14.
Orphanet J Rare Dis ; 16(1): 409, 2021 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-34600583

RESUMEN

BACKGROUND: Specialized clinical care for cystic fibrosis (CF) in Cyprus, a small island country, has been implemented since the 1990s. However, only recently, a national CF patient registry has been established for the systematic recording of patients' data. In this study, we aim to present data on the epidemiological, genotypic and phenotypic features of CF patients in the country from the most recent data collection in 2019, with particular emphasis on notable rare or unique cases. RESULTS: Overall, data from 52 patients are presented, 5 of whom have deceased and 13 have been lost to follow-up in previous years. The mean age at diagnosis was 7.2 ± 12.3 years, and the mean age of 34 alive patients by the end of 2019 was 22.6 ± 13.2 years. Patients most commonly presented at diagnosis with acute or persistent respiratory symptoms (46.2%), failure to thrive or malnutrition (40.4%), and dehydration or electrolyte imbalance (32.7%). Sweat chloride levels were diagnostic (above 60 mmol/L) in 81.8% of examined patients. The most common identified mutation was p.Phe508del (F508del) (45.2%), followed by p.Leu346Pro (L346P) (6.7%), a mutation detected solely in individuals of Cypriot descent. The mean BMI and FEV1 z-scores were 0.2 ± 1.3 and - 2.1 ± 1.7 across all age groups, respectively, whereas chronic Pseudomonas aeruginosa colonization was noted in 26.9% of patients. The majority of patients (74.5%) were eligible to receive at least one of the available CFTR modulator therapies. In 25% of patients we recovered rare or unique genotypic profiles, including the endemic p.Leu346Pro (L346P), the rare CFTR-dup2, the co-segregated c.4200_4201delTG/c.489 + 3A > G, and the polymorphism p.Ser877Ala. CONCLUSIONS: CF patient registries are particularly important in small or isolated populations, such as in Cyprus, with rare or unique disease cases. Their operation is necessary for the optimization of clinical care provided to CF patients, enabling their majority to benefit from evolving advances in precision medicine.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Adolescente , Adulto , Niño , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Demografía , Humanos , Laboratorios , Mutación/genética , Sistema de Registros , Adulto Joven
15.
PLoS One ; 16(7): e0253562, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34324503

RESUMEN

Multiple malformation syndromes (MMS) belong to a group of genetic disorders characterised by neurodevelopmental anomalies and congenital malformations. Here we explore for the first time the genetic aetiology of MMS using whole-exome sequencing (WES) in undiagnosed patients from the Greek-Cypriot population after prior extensive diagnostics workup including karyotype and array-CGH. A total of 100 individuals (37 affected), from 32 families were recruited and family-based WES was applied to detect causative single-nucleotide variants (SNVs) and indels. A genetic diagnosis was reported for 16 MMS patients (43.2%), with 10/17 (58.8%) of the findings being novel. All autosomal dominant findings occurred de novo. Functional studies were also performed to elucidate the molecular mechanism relevant to the abnormal phenotypes, in cases where the clinical significance of the findings was unclear. The 17 variants identified in our cohort were located in 14 genes (PCNT, UBE3A, KAT6A, SPR, POMGNT1, PIEZO2, PXDN, KDM6A, PHIP, HECW2, TFAP2A, CNOT3, AGTPBP1 and GAMT). This study has highlighted the efficacy of WES through the high detection rate (43.2%) achieved for a challenging category of undiagnosed patients with MMS compared to other conventional diagnostic testing methods (10-20% for array-CGH and ~3% for G-banding karyotype analysis). As a result, family-based WES could potentially be considered as a first-tier cost effective diagnostic test for patients with MMS that facilitates better patient management, prognosis and offer accurate recurrence risks to the families.


Asunto(s)
Anomalías Múltiples , Secuenciación del Exoma , Estudios de Cohortes , Humanos , Cariotipificación
16.
J Clin Invest ; 131(5)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33645542

RESUMEN

Congenital heart disease is the most common type of birth defect, accounting for one-third of all congenital anomalies. Using whole-exome sequencing of 2718 patients with congenital heart disease and a search in GeneMatcher, we identified 30 patients from 21 unrelated families of different ancestries with biallelic phospholipase D1 (PLD1) variants who presented predominantly with congenital cardiac valve defects. We also associated recessive PLD1 variants with isolated neonatal cardiomyopathy. Furthermore, we established that p.I668F is a founder variant among Ashkenazi Jews (allele frequency of ~2%) and describe the phenotypic spectrum of PLD1-associated congenital heart defects. PLD1 missense variants were overrepresented in regions of the protein critical for catalytic activity, and, correspondingly, we observed a strong reduction in enzymatic activity for most of the mutant proteins in an enzymatic assay. Finally, we demonstrate that PLD1 inhibition decreased endothelial-mesenchymal transition, an established pivotal early step in valvulogenesis. In conclusion, our study provides a more detailed understanding of disease mechanisms and phenotypic expression associated with PLD1 loss of function.


Asunto(s)
Alelos , Cardiopatías Congénitas , Enfermedades de las Válvulas Cardíacas , Mutación con Pérdida de Función , Fosfolipasa D , Femenino , Cardiopatías Congénitas/enzimología , Cardiopatías Congénitas/genética , Enfermedades de las Válvulas Cardíacas/enzimología , Enfermedades de las Válvulas Cardíacas/genética , Humanos , Masculino , Fosfolipasa D/genética , Fosfolipasa D/metabolismo
17.
Lab Invest ; 101(4): 442-449, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32989232

RESUMEN

Short-read next generation sequencing (NGS) has become the predominant first-line technique used to diagnose patients with rare genetic conditions. Inherent limitations of short-read technology, notably for the detection and characterization of complex insertion-containing variants, are offset by the ability to concurrently screen many disease genes. "Third-generation" long-read sequencers are increasingly being deployed as an orthogonal adjunct technology, but their full potential for molecular genetic diagnosis has yet to be exploited. Here, we describe three diagnostic cases in which pathogenic mobile element insertions were refractory to characterization by short-read sequencing. To validate the accuracy of the long-read technology, we first used Sanger sequencing to confirm the integration sites and derive curated benchmark sequences of the variant-containing alleles. Long-read nanopore sequencing was then performed on locus-specific amplicons. Pairwise comparison between these data and the previously determined benchmark alleles revealed 100% identity of the variant-containing sequences. We demonstrate a number of technical advantages over existing wet-laboratory approaches, including in silico size selection of a mixed pool of amplification products, and the relative ease with which an automated informatics workflow can be established. Our findings add to a growing body of literature describing the diagnostic utility of long-read sequencing.


Asunto(s)
Análisis Mutacional de ADN/métodos , Secuencias Repetitivas Esparcidas/genética , Mutagénesis Insercional/genética , Secuenciación de Nanoporos/métodos , ADN/análisis , ADN/genética , Bases de Datos Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Neoplasias/genética
18.
Eur J Med Genet ; 63(12): 104084, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33045407

RESUMEN

Williams-Beuren syndrome (WBS) is a rare neurodevelopmental disorder characterized by supravalvular aortic stenosis (SVAS), intellectual disability, overfriendliness and dysmorphic features. It is typically caused by 1.5-1.8 Mb deletions on 7q11.23. The 22q11.21 microduplication syndrome has a variable phenotype and is frequently associated with congenital heart disease. Here we present a unique patient, carrying aberrations within both of the above syndrome regions, referred for possible diagnosis of WBS because of SVAS. The patient was a boy who died suddenly 47 days after birth, possibly due to cardiac complications. Genetic testing was carried out, including array Comparative Genomic Hybridization (aCGH), Fluorescence In situ Hybridization (FISH) and Multiplex Ligation-Dependent Probe Amplification (MLPA) showing that the proband was heterozygous for a novel and atypical 0.3 Mb deletion in WBS region (7q11.23) encompassing the ELN gene. In addition, he was found heterozygous for a 22q11.21 microduplication. Parental studies revealed that the 7q11.23 deletion was inherited from the mother who also exhibited a cardiovascular phenotype, however very mild. The same maternally inherited deletion was detected in one of the proband's siblings, born two years later with a less severe SVAS. The 22q11.2 microduplication was de novo in origin. Detection and investigation of atypical deletions within known syndrome regions are crucial for better genotype-phenotype correlations and more accurate characterization of critical regions. The combined effect of two different genetic defects - one in a known syndrome region and one with variable clinical significance, is valuable for revealing gene interactions and enabling more accurate predictions, especially in prenatal diagnosis.


Asunto(s)
Anomalías Múltiples/genética , Estenosis Aórtica Supravalvular/genética , Duplicación Cromosómica/genética , Síndrome de DiGeorge/genética , Síndrome de Williams/genética , Anomalías Múltiples/patología , Adulto , Estenosis Aórtica Supravalvular/patología , Cromosomas Humanos Par 22/genética , Síndrome de DiGeorge/patología , Femenino , Humanos , Lactante , Patrón de Herencia , Masculino , Síndrome de Williams/patología
19.
Cancers (Basel) ; 12(11)2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33120919

RESUMEN

In Cyprus, approximately 9% of triple-negative (estrogen receptor-negative, progesterone receptor-negative, and human epidermal growth factor receptor 2-negative) breast cancer (TNBC) patients are positive for germline pathogenic variants (PVs) in BRCA1/2. However, the contribution of other genes has not yet been determined. To this end, we aimed to investigate the prevalence of germline PVs in BRCA1/2-negative TNBC patients in Cyprus, unselected for family history of cancer or age of diagnosis. A comprehensive 94-cancer-gene panel was implemented for 163 germline DNA samples, extracted from the peripheral blood of TNBC patients. Identified variants of uncertain clinical significance were evaluated, using extensive in silico investigation. Eight PVs (4.9%) were identified in two high-penetrance TNBC susceptibility genes. Of these, seven occurred in PALB2 (87.5%) and one occurred in TP53 (12.5%). Interestingly, 50% of the patients carrying PVs were diagnosed over the age of 60 years. The frequency of non-BRCA PVs (4.9%) and especially PALB2 PVs (4.3%) in TNBC patients in Cyprus appears to be higher compared to other populations. Based on these results, we believe that PALB2 and TP53 along with BRCA1/2 genetic testing could be beneficial for a large proportion of TNBC patients in Cyprus, irrespective of their age of diagnosis.

20.
Hum Mutat ; 41(11): 1906-1917, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32939943

RESUMEN

Goldberg-Shprintzen syndrome (GOSHS) is caused by loss of function variants in the kinesin binding protein gene (KIFBP). However, the phenotypic range of this syndrome is wide, indicating that other factors may play a role. To date, 37 patients with GOSHS have been reported. Here, we document nine new patients with variants in KIFBP: seven with nonsense variants and two with missense variants. To our knowledge, this is the first time that missense variants have been reported in GOSHS. We functionally investigated the effect of the variants identified, in an attempt to find a genotype-phenotype correlation. We also determined whether common Hirschsprung disease (HSCR)-associated single nucleotide polymorphisms (SNPs), could explain the presence of HSCR in GOSHS. Our results showed that the missense variants led to reduced expression of KIFBP, while the truncating variants resulted in lack of protein. However, no correlation was found between the severity of GOSHS and the location of the variants. We were also unable to find a correlation between common HSCR-associated SNPs, and HSCR development in GOSHS. In conclusion, we show that reduced, as well as lack of KIFBP expression can lead to GOSHS, and our results suggest that a threshold expression of KIFBP may modulate phenotypic variability of the disease.


Asunto(s)
Anomalías Craneofaciales/genética , Enfermedad de Hirschsprung/genética , Proteínas del Tejido Nervioso/genética , Adulto , Niño , Codón sin Sentido , Femenino , Estudios de Asociación Genética , Células HEK293 , Humanos , Masculino , Mutación Missense , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA