Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(12): 14092-14100, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38559988

RESUMEN

The copper connectivity technique is essential for achieving electrical interconnection in wafer level packaging (WLP), system in packaging (SiP), and 3D packaging. The essential processing material for copper connectivity is a copper sulfate electroplating solution in which organic additives play a crucial role in the regularity of copper electrodeposition. In this study, electrochemical tests, X-ray diffraction, 3D profiling, and scanning electron microscopy were used to investigate the leveling effect and mechanism of polyquaternary ammonium urea-containing polymer (PUB2) in the process of copper electrodeposition on-chip copper connections. PUB2 has excellent polarization ability on the target surface, remains unaffected by the sulfur additive SPS and poly(ethylene glycol), and displays a strong ability to regulate the copper deposition rate of through-holes and surface wiring. The waviness of the wafer surface wiring was reduced from 130 to approximately 70 nm after optimizing the PUB2 concentration, and the surface roughness was reduced from 10 to approximately 7 nm. The coating was dispersed evenly, and the rate of through-hole filling was improved by 57%. This study not only examined PUB2 leveling performance and mechanisms but also devised a research method and system for electroplating additives to facilitate the development and application of new electroplating additives.

2.
ACS Omega ; 9(14): 16810-16819, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38617601

RESUMEN

Calcification roasting-acid leaching is a clean, efficient, and environmentally friendly process, but in the roasting process, the local temperature is often too high, the heat release is not timely, and the heat transfer is blocked. Furthermore, the material is easy to sinter, which affects the final vanadium extraction effect. In this paper, a small amount of CeO2 was introduced in the roasting process of vanadium slag to promote the calcified roasting. The results showed that the vanadium leaching rate reached 93.17% with the addition of 0.1 wt % CeO2 at a roasting temperature of 750 °C, which was higher than that obtained without CeO2 addition (90.00%). The results of XPS, XRD, and SEM-EDS analyses confirmed that adding CeO2 to the roasted clinker significantly increased the proportion of pentavalent vanadium to the total vanadium by up to 28.64%. O2-TPD analysis revealed an enhanced chemisorbed oxygen with the CeO2-assisted roasting, indicated the activation of oxygen by CeO2, and resulted in an enhanced oxidation of vanadium. The work in this paper establishes an alternative route for catalytic oxidation-enhanced vanadium slag roasting, which can improve the utilization of vanadium slag at relatively lower temperatures under the action of CeO2 and is of positive significance in solving the problems of sintering and energy consumption in the roasting process.

3.
ACS Omega ; 9(4): 4664-4672, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38313495

RESUMEN

The resource utilization of phosphogypsum (PG) is the key to promote the green development of the phosphorus chemical industry. The natural environment and public safety are significantly threatened by the enormous volume of PG storage. In this study, Ca and S were successfully recovered from the PG via a multistep precipitation in the NaOH-BaCO3 system. The alkali solution can be recycled five times, with a first recovery ratio of about 97.9%, and the decomposition ratio of PG remained above 70% after five cycles. In addition, the recovery ratios of Ca and S in PG are 99.9 and 82.5%, respectively. The product of BaSO4 can be used as a weighting agent for oil and natural gas drilling mud. The BaSO4 can also be used as wave-absorbing materials, and its reflection loss value reaches 97.8% of the analytical purity BaSO4. This work provides a new idea for the efficient recycling of Ca and S in PG with an outstanding application prospect.

4.
ACS Omega ; 8(48): 45495-45501, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38075779

RESUMEN

Thiamine, a nitrogen-containing heterocyclic compound, is explored for the first time as a novel leveling agent in this study. Based on the density functional theory (DFT) calculations and molecular dynamics (MD) simulations of the adsorption process of thiamine and the commonly used leveling agent JGB, the average values of the binding energies after equilibrium of thiamine and JGB are similar, which indicates that the thiamine molecules have strong bonding ability with the surface of copper and can be adsorbed tightly on the surface of copper. By cyclic voltammetry (CV) curve, thiamine was found to inhibit copper deposition and the inhibition effect was stronger than JGB. The chrono potential curve (CP) test found that the potential difference △η = 87 > 50 mV at high and low speeds of thiamine, which indicates that thiamine has the potential to be used as a leveling agent. Electrochemical impedance spectroscopy (EIS) testing found that thiamine inhibited copper precipitation by inhibiting the reactions of Cu2+ → Cu+ and Cu+ → Cu. According to electroplating experiments, thiamine has a leveling effect on wafer electroplating and can be used as a leveling agent because the copper layer on the wafer obtained by adding it has a smoother surface compared to the copper layer obtained without adding it. It was found that wafer electroplating does not require PEG, and only adding 55 mg/L Cl-, 6 mg/L SPS, and 4 mg/L thiamine as additives can achieve a good filling effect.

5.
ACS Omega ; 8(49): 47295-47303, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38107926

RESUMEN

The morphology of hemihydrate phosphogypsum crystals is of vital importance in the hemihydrate-dihydrate (HH-DH) wet-process phosphoric acid production for high filtration strength. The morphology of hemihydrate phosphogypsum is commonly needlelike due to the strong acidic crystallization environment, which is unfavorable to the following filtration process. In this study, the crystal habit of hemihydrate phosphogypsum with a large aspect ratio was skillfully modified by additives to achieve a higher filtration strength. d-Glucitol (DG) reduces the theoretical aspect ratio of hemihydrate phosphogypsum crystals from 2.076 to 1.583 by interacting with the (002) face of CaSO4·0.5H2O preferentially, and poly(vinyl alcohol) (PVA) facilitates the aggregation of small grains to gather into a clusterlike structure. The modified morphologies of hemihydrate phosphogypsum have a lower bulk density and a larger porosity of the formed filter cake, which increases the filtration strength up to 45.9% when DG is added. Our work provides an in-depth explanation of the evolution mechanism of hemihydrate phosphogypsum morphology with the additives and its influence on the filtration performance. The improved filtration strength would reduce the water content of hemihydrate phosphogypsum and relieve the storage pressure of the phosphogypsum slag dump, which is meaningful to the clean production and process emission reduction of the phosphorus chemical industry.

6.
ACS Omega ; 8(45): 42367-42378, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38024749

RESUMEN

In order to overcome the apparent limitations of the inhomogeneous nature of large-scale microwave heating of fluids, a microwave reactor with a rigid-flexible combined stirring paddle is used to heat fluids, destabilizing the hot spots present in the microwave heating of fluids process. An integrated multiphysics field simulation model for calculating the microwave heating process with fluid was created for the purpose of clarifying the temperature field dispersion and fluid flow patterns in the reactor. By using the proposed model, the rigid-flexible combined stirring paddle is compared with the conventional single- and double-layer stirring paddle to highlight the benefits of the rigid-flexible combined stirring paddle in improving fluid heating uniformity. It was found experimentally that the leaching rate of soft manganese ore was increased by 7.08 and 5.22% compared to conventional single and double stirred paddles, respectively. In addition, the optimal stirrer parameters were investigated by the response surface method.

7.
ACS Omega ; 8(41): 38469-38480, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37867691

RESUMEN

Preventing lead-based anodes from causing high-energy consumption, lead pollution, and harmful anode slime emission is a major challenge for the current electrolytic manganese metal industry. In this work, a Ti4O7-coated titanium electrode was used as anode material (Ti/Ti4O7 anode) in manganese electrowinning process for the first time and compared with a lead-based anode (Pb anode). The Ti/Ti4O7 anode was used for galvanostatic electrolysis; the cathodic current efficiency improved by 3.22% and energy consumption decreased by 7.82%. During 8 h of electrolysis, it reduced 90.42% solution anode slime and 72.80% plate anode slime formation. Anode product characterization and electrochemical tests indicated that the Ti/Ti4O7 anode possesses good oxygen evolution activity, and γ-MnO2 has a positive catalytic effect on oxygen evolution reaction (OER), which inhibited anode Mn2+ oxidation reaction and reduced the formation of anode slime. In addition, the low charge-transfer resistance, high diffusion resistance, and dense MnO2 layer of the anode blocked the diffusion path of Mn3+ in the system and inhibited the formation of anode slime. The Ti/Ti4O7 anode exhibits excellent electrochemical performance, which provides a new idea for the selection of novel anodes, energy savings and emission reduction, and the establishment of a new mode of clean production in the electrolytic manganese metal industry.

8.
Langmuir ; 39(34): 12260-12269, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37582181

RESUMEN

Adsorbate transport during the electrochemical process mostly follows the electric-field direction or the high-to-low direction along the concentration gradient and thus often limits the reactant concentration at the adsorption site and requires specific mechanical or chemical bonds of adsorbates to trigger local excess aggregation for advanced framework structure assembly. Herein, we have discovered an active pumping channel during electrochemical adsorption of a manganese colloid, which follows a low-to-high direction inverse concentration gradient. It triggers surface excess micelle aggregation with even over 16-folds higher concentration than that in bulk owing to hydrogen-bonding difference of the micelle surface between in bulk and at the water surface. Micelles in the channel exhibit unique polymerization behaviors by directly polymerizing monomer micelles to form highly catalytic MnO2 of dendritic frameworks, which can serve as a scalable thin-layer aqueous-phase reactor. It increases the understanding of the interface-dependent dynamic nature of micelle or more adsorbates and inspires transformative synthesizing approaches for advanced oxide materials.

9.
RSC Adv ; 13(16): 10600-10609, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37021098

RESUMEN

In this work, we report the use of surfactants to improve the performance of phosphate ore leaching while reducing the concentration of metallic impurities in the leaching solution. Based on the zeta potential analysis, sodium oleate (SOL) is determined as a suitable surfactant because it can change interfacial properties and improve ionic diffusion. This is experimentally demonstrated by the high leaching performance. After that, the reaction conditions on the leaching performance are systematically investigated. Under the optimal experimental conditions (SOL concentration of 10 mg L-1, sulfuric acid concentration of 1.72 mol L-1, leaching temperature of 75 °C, and leaching time of 180 min), a high phosphorus leaching efficiency of 99.51% is achieved. Meanwhile, the leaching solution presents a lower content of metallic impurities. Further measurements performed on the leaching residues indicate that the additive SOL can promote the growth of platy crystals and facilitate PO leaching. Overall, this work demonstrates that the SOL-assisted leaching method allows for highly-efficient utilization of PO and high-purity phosphoric acid production.

11.
ACS Omega ; 6(48): 33206-33214, 2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34901672

RESUMEN

Conventional rigid impellers are frequently used in the leaching process of phosphate rock, which often form a symmetrical flow field in the reactor, leading to a reduction in the leaching efficiency. In this work, a rigid-flexible combined impeller was applied to the leaching process of phosphate rock to increase the leaching efficiency. The effects of the reaction temperature (T), sulfuric acid excess coefficient (ε), liquid-solid ratio (L/S), agitation speed (N), and leaching time (t) on the leaching of phosphate rock were investigated, and based on this, the leaching kinetics was studied. The results indicated that under the optimum parameters of a reaction temperature of 353 K, a sulfuric acid excess coefficient of 1.15, a liquid-solid ratio of 4.0 mL/g, an agitation speed of 280 rpm, and a leaching time of 120 min, the leaching rate of phosphate rock using the rigid-flexible combined impeller reached 89.1%, which was 7.1% higher than that of the conventional rigid impeller under the same electric energy consumption. The leaching process complied with the unreacted core shrinking model, and the reaction rate was controlled by product layer diffusion. The apparent rate equation of the leaching process was 1 - 2X/3 - (1 - X)2/3 = 2.06 × 10-3[ε]1.375[L/S]1.273[N]0.748 exp(-19.03 × 103/RT)·t, and the apparent activation energy was 19.03 kJ/mol. The numerical simulation and analysis of the leaching residue showed that the system temperature in the rigid-flexible combined impeller system was homogenized, and the mixing effect of reactants was enhanced through the multiposition movement of the flexible connection piece in the axial direction, so that the reactants participated in the chemical reaction more efficiently.

12.
Nat Commun ; 12(1): 4876, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34385436

RESUMEN

While the printed circuit board (PCB) has been widely considered as the building block of integrated electronics, the world is switching to pursue new ways of merging integrated electronic circuits with textiles to create flexible and wearable devices. Herein, as an alternative for PCB, we described a non-printed integrated-circuit textile (NIT) for biomedical and theranostic application via a weaving method. All the devices are built as fibers or interlaced nodes and woven into a deformable textile integrated circuit. Built on an electrochemical gating principle, the fiber-woven-type transistors exhibit superior bending or stretching robustness, and were woven as a textile logical computing module to distinguish different emergencies. A fiber-type sweat sensor was woven with strain and light sensors fibers for simultaneously monitoring body health and the environment. With a photo-rechargeable energy textile based on a detailed power consumption analysis, the woven circuit textile is completely self-powered and capable of both wireless biomedical monitoring and early warning. The NIT could be used as a 24/7 private AI "nurse" for routine healthcare, diabetes monitoring, or emergencies such as hypoglycemia, metabolic alkalosis, and even COVID-19 patient care, a potential future on-body AI hardware and possibly a forerunner to fabric-like computers.


Asunto(s)
Técnicas Biosensibles/instrumentación , Medicina de Precisión/instrumentación , Textiles , Dispositivos Electrónicos Vestibles , Tecnología Inalámbrica/instrumentación , Técnicas Biosensibles/métodos , COVID-19/diagnóstico , COVID-19/prevención & control , COVID-19/virología , Diseño de Equipo , Humanos , Monitoreo Fisiológico/instrumentación , Monitoreo Fisiológico/métodos , Medicina de Precisión/métodos , SARS-CoV-2/fisiología , Sudor/fisiología
13.
Environ Technol ; 42(28): 4444-4455, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32436434

RESUMEN

In industrial electrolytic manganese metal process, the energy consumption closely related to the electrolysis of cathode and anode. The effect of Cl- concentration on electrochemical oscillation at the anode of the electrolytic manganese metal cell was investigated. The results showed that the electrochemical oscillation at the anode was inhibited by Cl-, and the amplitude and frequency of the electrochemical oscillation decreased as the increase of Cl- concentration. When the concentration of Cl- was 2.68 g/L, the cathode and anode electrodes could be effectively activated, and the manganese current efficiency reached its minimum, correspondingly, the power consumption reached its maximum. In addition, the presence of the chloride reduced the production of MnO2 at the anode surface. ClO4- and free ions formed insoluble amorphous structures on the surface of the anode with the increase in reaction time and chloride ion concentration, and the insoluble amorphous structures prevented further generation of MnO2. Thus, electrolytic manganese metal energy consumption decreased.


Asunto(s)
Cloruros , Manganeso , Electrodos , Electrólisis , Compuestos de Manganeso , Óxidos
14.
ACS Omega ; 5(35): 22652-22660, 2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32923825

RESUMEN

To expand the application of p-n heterojunction NiO-SnO2 ceramic materials from gas sensors and photoelectrocatalysts to oxygen-evolution reaction (OER) catalysts, we fabricated two NiO-SnO2 ceramics on a Ti plate (NSCTs) using a simple layer-by-layer method. The prepared NSCTs (NSCT-480 and NSCT-600) were characterized and analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), diffuse reflectance ultraviolet-visible spectroscopy (DRUV-vis), and X-ray photoelectron spectroscopy (XPS). The OER activity and stability were measured by linear sweep voltammetry, cyclic voltammetry, chronoamperometry, amperometric i-t curve, and chronopotentiometry in a 1.0 mol/L NaOH solution at normal temperature and pressure. After 500 cycles, the lower overpotential (η = 194 mV at 1 mA/cm2) indicated that NSCT-600 offered adequate performance as an OER electrocatalyst. Moreover, the changes observed with cyclic voltammetry, SEM, XRD, and XPS during the OER test revealed that the redox cycle of Ni2+/Ni3+, morphology, and crystal faces of NiO and SnO2 were three critical factors. The data proved that the NiO-SnO2 ceramic is a stable OER electrocatalyst. The results of this study will provide a guide for the design and fabrication of p-n heterojunction metal-oxide ceramic electrocatalysts with a high OER performance.

15.
ACS Omega ; 5(15): 8777-8783, 2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-32337439

RESUMEN

Oxidative-alkaline leaching of vanadium from vanadium-chromium-reducing residues with K2Cr2O7 was investigated in this paper. The effects of processing parameters including dosage of NaOH, dosage of K2Cr2O7, reaction time, and reaction temperature on the leaching efficiency of vanadium were studied. The results simulated by response surface methodology indicated that vanadium leaching was affected significantly by the dosage of K2Cr2O7 and NaOH, and the processing parameters that affected the leaching efficiency of vanadium followed the order m(NaOH)/m(residue) > m(K2Cr2O7)/sssssm(residue) > reaction temperature > reaction time. The leaching efficiency of vanadium was up to 99.92% under optimal conditions: reaction temperature of 90 °C, reaction time of 60 min, liquid-to-solid ratio of 5:1 mL g-1, m(K2Cr2O7)/m(residue) = 0.10, and m(NaOH)/m(residue) = 0.30. The kinetics analysis indicated that diffusion through the product layer was the controlling step and the apparent activation energy for vanadium leaching was calculated to be 58.275 kJ·mol-1.

16.
RSC Adv ; 10(66): 40047-40054, 2020 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-35520869

RESUMEN

Ce modified MnO x /SAPO-34 was prepared and investigated for low-temperature selective catalytic reduction of NO x with ammonia (NH3-SCR). The 0.3Ce-Mn/SAPO-34 catalyst had nearly 95% NO conversion at 200-350 °C at a space velocity of 10 000 h-1. Microporous SAPO-34 as the support provided the catalyst with increased hydrothermal stability. XPS and H2-TPR results proved that the Mn4+ and Oα content increased after incorporation of Ce, this promoted the conversion of NO at low temperature via a 'fast SCR' route. NH3-TPD measurements combined oxidation experiments of NO, NH3 indicated the reduction of both the surface acidity and the amount of acid sites, which effectively decreased the NH3 oxditaion to NO or N2O at elevated temperature and promoted the catalytic selectivity for nitrogen. A redox cycle between manganese oxide and Ce was assumed for the active oxygen transfer and facilitated the catalyst durability.

17.
ACS Appl Mater Interfaces ; 12(3): 3654-3660, 2020 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-31880147

RESUMEN

To provide a light and breathable self-charging wearable power source adaptable for various weather conditions and body movements, couching embroidery has been proposed as an industrially scalable electrode-to-device assembling strategy, rather than a decorative textile pattern making process. Various types of cable electrodes and device units with a large size and shape difference were directly and reliably assembled on a light and soft tulle to form either photovoltaic or battery devices, which can be further integrated following any irregular pattern and any electrical connection design. Under sunlight, a transparent tulle as a glove or scarf can be charged up at a power of 10 W/m2, and then maintain stable power output in the dark for various weather and body moving conditions, including bending, twisting, hand-stretching, wind blowing, and water washing. Our approaches not only simplified the fabrication of integrated fabric-type energy devices but also improved the structural and functional design flexibility of a portable electronic power source, especially for summer wearing applications.

18.
Water Sci Technol ; 79(2): 366-374, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30865608

RESUMEN

Many technologies have been proposed to oxidize chromium, such as roasting-water leaching technology and hydrometallurgical methods such as pressure oxidative leaching coupled with oxygen, ozone, permanganate and ferrate, but the problems associated with the high temperature, low overall resource utilization efficiency, high energy consumption, and the environmental pollution, still remain unsolved. This paper focuses on the oxidation process of chromium (III) with hydrogen peroxide (H2O2) in an alkaline medium. The effect of parameters including dosage of H2O2, dosage of NaOH, reaction time, reaction temperature and stirring rate on the oxidation efficiency of chromium were investigated. The oxidation efficiency was significantly affected by the dosage of H2O2 and NaOH, reaction time and reaction temperature took second place; last was the stirring rate. Oxidation efficiency was nearly 100% under the optimal conditions: volume ratio of H2O2 to mass of Cr2(SO4)3 of 2.4 mL/g, mass ratio of NaOH to Cr2(SO4)3 0.6 g/g, reaction time of 90 min, reaction temperature of 90 °C and stirring rate of 500 rpm.


Asunto(s)
Cromo/química , Modelos Químicos , Contaminantes Químicos del Agua/química , Cromo/análisis , Peróxido de Hidrógeno/química , Oxidación-Reducción , Contaminantes Químicos del Agua/análisis
19.
J Colloid Interface Sci ; 542: 451-459, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30771639

RESUMEN

Hydrogen is one of the most clean energy carriers because water is only the product of its combustion. The electrolysis of ammonia is expected to offer an attractive alternative to water electrolysis for the production of hydrogen because of the lower thermodynamic energy. However, the synthesis and utilization of high-performance Pt electrocatalysts have encountered challenges related to instability and hydroxyl ion sensitivity. To address these issues, we developed PtSnOx-based nanoparticles that maintained high electrocatalytic activity and stability for the decomposition of aqueous ammonia to generate hydrogen under native pH conditions which means the acidity/alkalinity is not adjusted. FT-IR, XRD, and XPS evidence showed PtSnOx was a tri-functionalised electrocatalyst. That is to say, the spherical SnOx nanoparticles assisted ammonia adsorption and activation, which were accompanied by a hydrogen adsorption on PtSnOx and hydrogen transfer along the SnOH bond over the electrocatalyst. According to these data of FT-IR, XRD, and XPS before and after reaction, a possible mechanism for the decomposition of aqueous ammonia to produce hydrogen was proposed. This study could pave the way to prospective routes for the selective oxidation of the NH bond to generate hydrogen under mild conditions.

20.
ISA Trans ; 90: 268-277, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30732993

RESUMEN

The analysis of fluid flow signals and the characterization of fluid flow behavior are of great importance for two-phase flow studies. In this work, the fractional Fourier transform (FRFT), which was based on the optimum order calculated by stepping search method, was proposed to extract the characteristics of fluid flow signals. Meanwhile, the largest Lyapunov exponent (LLE), which is an indication of the chaotic degree of mixing process, was adopted to quantify fluid flow behavior. The maximum amplitude (MA) and LLE value were taken together to inquire into the relationship between the characteristics of fluid flow signals and the characterization of fluid flow behavior. In addition, differences between the two adjacent values (AD) and the maximum differences (MD) are employed to further analyze the differences in behavioral characterization with MA and LLE. The results show that the MA value performs the same increasing trend as the LLE value when the gas flow rate and agitation speed increase. AD and MD values of the MA are one to two orders of magnitude greater than those of the LLE. The eigenvalues (MA) solved by the FRFT method is facilitates capturing small changes owing to changes in external conditions. These findings can provide new ideas for the extraction and characterization of fluid flow behavior.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...