Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 62(15): e202214332, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-36749904

RESUMEN

C-N coupling is significant for the synthesis of fine chemicals toward various applications. Hydroaminoalkylation of olefins is a tandem reaction of C-N coupling involving first the formation of an aldehyde through hydroformylation of an olefin and then the production of amine through reductive amination of the aldehyde. Here we report a stable, supported catalyst of singly dispersed Rh1 atoms anchored on TiO2 (P25) nanoparticles designated as Rh1 /P25. Its high activity for C-N coupling was demonstrated by six hydroaminoalkylations of olefins and amines with selectivity of higher than 90% for producing tertiary amines. The singly dispersed Rh1 O4 on P25 exhibit activity and selectivity for hydroaminoalkylation comparable or even higher than some reported molecular catalysts. In contrast to molecular catalysts, the Rh-based single-atom Rh heterogeneous catalysis (Rh1 /P25) can be readily separated from reactants and products, reused for multiple runs of hydroaminoalkylation, and recycled with a low cost.

2.
Phys Chem Chem Phys ; 25(5): 4070-4080, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36651173

RESUMEN

Catalytic reforming of methane to produce syngas is an important strategy for producing value-added chemicals. The conventional reforming catalyst relies on supported nickel nanoparticles. In this work, we investigated singly dispersed Rh cations anchored on a CeO2 catalyst (Rh1/CeO2) for high activity and selectivity towards the production of syngas via partial oxidation of methane (POM) in the temperature range of 600-700 °C. The yields of H2 and CO at 700 °C are 83% and 91%, respectively. The anchored Rh1 atoms on CeO2 of Rh1/CeO2 are in the cationic state, and on an average each Rh1 atom coordinates with 4-5 surface lattice oxygen atoms of CeO2. Compared to inert CeO2 for POM, via the incorporation of single-atom sites, Rh1 modifies the electronic state of oxygen atoms proximal to the Rh1 atoms and thus triggers the catalytic activity of CeO2. The high activity of single-atom catalyst Rh1/CeO2 suggests that the incorporation of single atoms of transition metals to the surface of a reducible oxide can modulate the electronic state of proximal anions of the oxide support toward forming an electronic state favorable for the selective formation of ideal products.

3.
J Am Chem Soc ; 145(1): 392-401, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36548635

RESUMEN

Heterogeneous catalysis is key for chemical transformations. Understanding how catalysts' active sites dynamically evolve at the atomic scale under reaction conditions is a prerequisite for accurately determining catalytic mechanisms and predictably developing catalysts. We combine in situ time-dependent scanning tunneling microscopy observations and machine-learning-accelerated first-principles atomistic simulations to uncover the mechanism of restructuring of Pt catalysts under a pressure of carbon monoxide (CO). We show that a high CO coverage at a Pt step edge triggers the formation of atomic protrusions of low-coordination Pt atoms, which then detach from the step edge to create sub-nano-islands on the terraces, where under-coordinated sites are stabilized by the CO adsorbates. The fast and accurate machine-learning potential is key to enabling the exploration of tens of thousands of configurations for the CO-covered restructuring catalyst. These studies open an avenue to achieve an atomic-scale understanding of the structural dynamics of more complex metal nanoparticle catalysts under reaction conditions.

4.
J Am Chem Soc ; 143(40): 16566-16579, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34590856

RESUMEN

Single-atom catalysts are a relatively new type of catalyst active for numerous reactions but mainly for chemical transformations performed at low or intermediate temperatures. Here we report that singly dispersed Rh1O5 clusters on TiO2 can catalyze the partial oxidation of methane (POM) at high temperatures with a selectivity of 97% for producing syngas (CO + H2) and high activity with a long catalytic durability at 650 °C. The long durability results from the substitution of a Ti atom of the TiO2 surface lattice by Rh1, which forms a singly dispersed Rh1 atom coordinating with five oxygen atoms (Rh1O5) and an undercoordinated environment but with nearly saturated bonding with oxygen atoms. Computational studies show the back-donation of electrons from the dz2 orbital of the singly dispersed Rh1 atom to the unoccupied orbital of adsorbed CHn (n > 1) results in the charge depletion of the Rh1 atom and a strong binding of CHn to Rh1. This strong binding decreases the barrier for activating C-H, thus leading to high activity of Rh1/TiO2. A cationic Rh1 single atom anchored on TiO2 exhibits a weak binding to atomic carbon, in contrast to the strong binding of the metallic Rh surface to atomic carbon. The weak binding of atomic carbon to Rh1 atoms and the spatial isolation of Rh1 on TiO2 prevent atomic carbon from coupling on Rh1/TiO2 to form carbon layers, making Rh1/TiO2 resistant to carbon deposition than supported metal catalysts for POM. The highly active, selective, and durable high-temperature single-atom catalysis performed at 650 °C demonstrates an avenue of application of single-atom catalysis to chemical transformations at high temperatures.

5.
Chemphyschem ; 20(17): 2217-2220, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31313443

RESUMEN

Methane chemisorption has been recently demonstrated on the rutile IrO2 (110) surface. However, it remains unclear how the general requirements are for methane chemisorption or complexation with a single atom on an oxide surface. By exploring methane adsorption on Pt1 substitutionally doped on many rutile-type oxides using hybrid density functional theory, we show that the occupancy of the Pt dz2 orbital is the key to methane chemisorption. Pt single atom on the semiconducting or wide-gap oxides such as TiO2 and GeO2 strongly chemisorbs methane, because the empty Pt dz2 orbital is located in the gap and can effectively accept σ-electron donation from the methane C-H bond. In contrast, Pt single atom on metallic oxides such as IrO2 and RuO2 does not chemisorb methane, because the Pt dz2 orbital strongly mixes with the support-oxide electronic states and become more occupied, losing its ability to chemisorb methane. This study sheds further light on the impact of the interaction between a Pt single atom and the oxide support on methane adsorption.

6.
Chem Rev ; 119(12): 6822-6905, 2019 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-31181905

RESUMEN

Heterogeneous catalysis occurs on the surface of a catalyst particle in a gas or liquid environment of reactants. The surface of the catalyst particle acts as an active chemical agent directly participating in a chemical reaction performed at a solid-gas or solid-liquid interface. Thus, authentic surface chemistry and the structure of a catalyst particle during catalysis are key descriptors for understanding catalytic performance of this catalyst. However, identification of the authentic surface of a catalyst particle during catalysis is not a simple task. We are far from knowing the fact. Photoelectron spectroscopy is one of the main techniques for characterizing surface of a catalyst since it's a surface sensitive technique. When used to track the surface of a catalyst particle at relatively high temperature in gas phase in the torr pressure range, it is called near ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) or AP-XPS for simplicity. In the last several years, AP-XPS has been used to observe surface chemistry of catalysts of single crystals and nanoparticles of metal, metal oxide, and carbide. In this review, instrumentation of the near ambient pressure X-ray photoelectron spectrometers and observation of catalyst surfaces in gases phase under reaction conditions and during catalysis with AP-XPS are discussed with the following objectives: (1) to present how the surface of a catalyst particle can be characterized in gas phase, (2) to interpret how surface chemistries observed during catalysis are correlated with measured catalytic performances, (3) to demonstrate how the uncovered correlations between surface structures and catalytic performances help to understand catalytic mechanisms at a molecular level, and (4) to discuss challenges and prospects of using AP-XPS to explore the authentic surface of a catalyst under a condition near to an industrial catalytic condition. This review focuses on the application of AP-XPS to studies of catalysis and how the insights gained from AP-XPS studies can be used to achieve fundamental understanding of the catalytic mechanism at a molecular level.

7.
J Am Chem Soc ; 141(18): 7283-7293, 2019 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-31021087

RESUMEN

Heterogeneous catalysis performs on specific sites of a catalyst surface even if specific sites of many catalysts during catalysis could not be identified readily. Design of a catalyst by managing catalytic sites on an atomic scale is significant for tuning catalytic performance and offering high activity and selectivity at a relatively low temperature. Here, we report a synergy effect of two sets of single-atom sites (Ni1 and Ru1) anchored on the surface of a CeO2 nanorod, Ce0.95Ni0.025Ru0.025O2. The surface of this catalyst, Ce0.95Ni0.025Ru0.025O2, consists of two sets of single-atom sites which are highly active for reforming CH4 using CO2 with a turnover rate of producing 73.6 H2 molecules on each site per second at 560 °C. Selectivity for producing H2 at this temperature is 98.5%. The single-atom sites Ni1 and Ru1 anchored on the CeO2 surface of Ce0.95Ni0.025Ru0.025O2 remain singly dispersed and in a cationic state during catalysis up to 600 °C. The two sets of single-atom sites play a synergistic role, evidenced by lower apparent activation barrier and higher turnover rate for production of H2 and CO on Ce0.95Ni0.025Ru0.025O2 in contrast to Ce0.95Ni0.05O2 with only Ni1 single-atom sites and Ce0.95Ru0.05O2 with only Ru1 single-atom sites. Computational studies suggest a molecular mechanism for the observed synergy effects, which originate at (1) the different roles of Ni1 and Ru1 sites in terms of activations of CH4 to form CO on a Ni1 site and dissociation of CO2 to CO on a Ru1 site, respectively and (2) the sequential role in terms of first forming H atoms through activation of CH4 on a Ni1 site and then coupling of H atoms to form H2 on a Ru1 site. These synergistic effects of the two sets of single-atom sites on the same surface demonstrated a new method for designing a catalyst with high activity and selectivity at a relatively low temperature.

8.
Angew Chem Int Ed Engl ; 57(51): 16672-16677, 2018 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-30328259

RESUMEN

The majority of harmful atmospheric CO and NOx emissions are from vehicle exhausts. Although there has been success addressing NOx emissions at temperatures above 250 °C with selective catalytic reduction technology, emissions during vehicle cold start (when the temperature is below 150 °C), are a major challenge. Herein, we show we can completely eliminate both CO and NOx emissions simultaneously under realistic exhaust flow, using a highly loaded (2 wt %) atomically dispersed palladium in the extra-framework positions of the small-pore chabazite material as a CO and passive NOx adsorber. Until now, atomically dispersed highly loaded (>0.3 wt %) transition-metal/SSZ-13 materials have not been known. We devised a general, simple, and scalable route to prepare such materials for PtII and PdII . Through spectroscopy and materials testing we show that both CO and NOx can be simultaneously completely abated with 100 % efficiency by the formation of mixed carbonyl-nitrosyl palladium complex in chabazite micropore.

9.
ACS Appl Mater Interfaces ; 10(44): 38134-38140, 2018 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-30360084

RESUMEN

Identification of the chemical states of catalytic sites is critical for an atomic-level understanding of catalytic mechanisms. Herein, hydrogen thermal pretreatment of the Pt single atoms on porous nanorods of CeO2 (Pt1/ PN-CeO2) induced the formation of isolated bimetallic PtCe sites as a new type of active center for CO oxidation. The evolutions of Pt1/ PN-CeO2 catalysts during the hydrogen pretreatment and CO oxidation were examined by various in situ techniques including infrared, ambient-pressure X-ray photoelectron and X-ray absorption spectroscopy. The experimental results demonstrate that these bimetallic sites can be partially preserved or reoxidized into Pt-O-Ce with a low coordination number with oxygen under realistic conditions, leading to the appropriate CO adsorption and activating the efficient activity of Pt1/ PN-CeO2 for CO oxidation at low temperature.

10.
Chem Commun (Camb) ; 54(71): 9981-9984, 2018 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-30123913

RESUMEN

Studying surface of catalyst nanoparticles in a flowing liquid is important for understanding the underlying mechanism of a reaction performed in liquid. We report the design of a reaction cell system of Si3N4 window covering the flowing liquid with an electron-transmissible membrane. By using metal nanoparticles as a catalyst dispersed in a solvent, examination of the surface of catalyst nanoparticles in a flowing liquid was demonstrated by observation of Ag 3d photoemission feature when a liquid containing Ag nanoparticles was flowing through this system.

11.
Sci Adv ; 4(8): eaar5418, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30105302

RESUMEN

Progress in heterogeneous catalysis is often hampered by the difficulties of constructing active architectures and understanding reaction mechanisms at the molecular level due to the structural complexity of practical catalysts, in particular for multicomponent catalysts. Although surface science experiments and theoretical simulations help understand the detailed reaction mechanisms over model systems, the direct study of the nature of nanoparticle catalysts remains a grand challenge. This paper describes a facile construction of well-defined Pt-skin catalysts modified by different 3d transition metal (3dTM) atoms in subsurface regions. However, on the catalyst containing both surface and subsurface 3dTMs, the selectivity of propane dehydrogenation decreases in the sequences of Pt ~ PtFe > PtCo > PtNi due to the easier C-C cracking on exposed Co and Ni sites. After the exposed 3dTMs were removed completely, the C3H6 selectivity was found to increase markedly in the row Pt < PtNi@Pt < PtCo@Pt < PtFe@Pt, which is in line with the calculated trend of d-band center shifting. The established relationship between reactivity and d-band center shifting illustrates the role of subsurface catalysis in dehydrogenation reaction.

12.
Phys Chem Chem Phys ; 20(35): 22909-22914, 2018 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-30152484

RESUMEN

Catalytic transformation of methane under mild conditions remains a grand challenge. Fundamental understanding of C-H activation of methane is crucial for designing a catalyst for the utilization of methane at low temperature. Recent experiments show that strong methane chemisorption on oxides of precious metals leads to facile C-H activation. However, only a very few such oxides are capable (for example, IrO2 and PdO). Here we show for the first time that strong methane chemisorption and facile C-H activation can be accomplished by single transition-metal atoms on TiO2, some of which are even better than IrO2. Using methane adsorption energy as a descriptor, we screened over 30 transition-metal single atoms doped on TiO2 for the chemisorption of methane by replacing a surface Ti atom with a single atom of another transition metal. It is found that the adsorption energies of methane on a single atom of Pd, Rh, Os, Ir, and Pt doped on rutile TiO2(110) are greater than or similar to those on rutile IrO2(110), a benchmark for the chemisorption of methane on transition oxides. Electronic structure analysis uncovered orbital overlap and mixing between methane and the single atom, as well as significant localization of the charge between the molecule and the surface, demonstrating chemical bonding of CH4 to doped single atoms. Facile C-H dissociation has been found on the single-atom sites with the transition state energies lower than desorption energies. Our computational studies predict that Pd, Rh, Os, Ir, and Pt single atoms on rutile TiO2(110) can activate C-H of methane at a temperature lower than 25 °C.

13.
Rev Sci Instrum ; 89(5): 054103, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29864830

RESUMEN

Transition metal elements are the most important elements of heterogeneous catalysts used for chemical and energy transformations. Many of these catalysts are active at a temperature higher than 400 °C. For a catalyst containing a 3d or 5d metal element with a low concentration, typically their released fluorescence upon the K-edge or L-edge adsorption of X-rays is collected for the analysis of chemical and coordination environments of these elements. However, it is challenging to perform in situ/operando X-ray absorption spectroscopy (XAS) studies of elements of low-energy absorption edges at a low concentration in a catalyst during catalysis at a temperature higher than about 450 °C. Here a unique reaction system consisting two reactors, called a dual reactor system, was designed for performing in situ or operando XAS studies of these elements of low-energy absorption edges in a catalyst at a low concentration during catalysis at a temperature higher than 450 °C in a fluorescent mode. This dual-reactor system contains a quartz reactor for preforming high-temperature catalysis up to 950 °C and a Kapton reactor remaining at a temperature up to 450 °C for collecting data in the same gas of catalysis. With this dual reactor, chemical and coordination environments of low-concentration metal elements with low-energy absorption edges such as the K-edge of 3d metals including Ti, V, Cr, Mn, Fe, Co, Ni, and Cu and L edge of 5d metals including W, Re, Os, Ir, Pt, and Au can be examined through first performing catalysis at a temperature higher than 450 °C in the quartz reactor and then immediately flipping the catalyst in the same gas flow to the Kapton reactor remained up to 450 °C to collect data. The capability of this dual reactor was demonstrated by tracking the Mn K-edge of the MnOx/Na2WO4 catalyst during activation in the temperature range of 300-900 °C and catalysis at 850 °C.

14.
Langmuir ; 34(33): 9606-9616, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-29786441

RESUMEN

For nanoparticles active for chemical and energy transformations in static liquid environment, chemistries of surface or near-surface regions of these catalyst nanoparticles in liquid are crucial for fundamentally understanding their catalytic performances at a molecular level. Compared to catalysis at a solid-gas interface, there is very limited information on the surface of these catalyst nanoparticles under a working condition or during catalysis in liquid. Photoelectron spectroscopy is a surface-sensitive technique; however, it is challenging to study the surfaces of catalyst nanoparticles dispersed in static liquid because of the short inelastic mean free path of photoelectrons traveling in liquid. Here, we report a method for tracking the surface of nanoparticles dispersed in static liquid by employing graphene layers as an electron-transparent membrane to separate the static liquid containing a solvent, catalyst nanoparticles, and reactants from the high-vacuum environment of photoelectron spectrometers. The surfaces of Ag nanoparticles dispersed in static liquid sealed in such a graphene membrane liquid cell were successfully characterized using a photoelectron spectrometer equipped with a high vacuum energy analyzer. With this method, the surface of catalyst nanoparticles dispersed in liquid during catalysis at a relatively high temperature up to 150 °C can be tracked with photoelectron spectroscopy.

15.
Rev Sci Instrum ; 89(2): 024102, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29495804

RESUMEN

Structure of catalyst nanoparticles dispersed in liquid phase at high temperature under gas phase of reactant(s) at higher pressure (≥5 bars) is important for fundamental understanding of catalytic reactions performed on these catalyst nanoparticles. Most structural characterizations of a catalyst performing catalysis in liquid at high temperature under gas phase at high pressure were performed in an ex situ condition in terms of characterizations before or after catalysis since, from technical point of view, access to the catalyst nanoparticles during catalysis in liquid phase at high temperature under high pressure reactant gas is challenging. Here we designed a reactor which allows us to perform structural characterization using X-ray absorption spectroscopy including X-ray absorption near edge structure spectroscopy and extended X-ray absorption fine structure spectroscopy to study catalyst nanoparticles under harsh catalysis conditions in terms of liquid up to 350 °C under gas phase with a pressure up to 50 bars. This reactor remains nanoparticles of a catalyst homogeneously dispersed in liquid during catalysis and X-ray absorption spectroscopy characterization.

16.
Phys Chem Chem Phys ; 20(15): 9812-9823, 2018 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-29589011

RESUMEN

Studies of the surface of a catalyst in the gas phase via photoelectron spectroscopy is an important approach to establish a correlation between the surface of a catalyst under reaction conditions or during catalysis and its corresponding catalytic performance. Unlike the well understood interactions between photoelectrons and the atomic layers of a surface in ultrahigh vacuum (UHV) and the well-developed method of quantitative analysis of a solid surface in UHV, a fundamental understanding of the interactions between X-ray photons and gaseous molecules and between photoelectrons and molecules of the gas phase in ambient pressure X-ray photoelectron spectroscopy (AP-XPS) is lacking. Through well designed experiments, here the impact of the interactions between photoelectrons and gaseous molecules and interactions between X-ray photons and gaseous molecules on the intensity of the collected photoelectrons have been explored. How the changes in photoelectron intensity resulting from these interactions influence measurement of the authentic atomic ratio of element M to A of a solid surface has been discussed herein, and methods to correct the measured nominal atomic ratio of two elements of a solid surface upon travelling through a gas phase to its authentic atomic ratio have been developed.

17.
Nat Commun ; 9(1): 1231, 2018 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-29581429

RESUMEN

Catalytic transformation of CH4 under a mild condition is significant for efficient utilization of shale gas under the circumstance of switching raw materials of chemical industries to shale gas. Here, we report the transformation of CH4 to acetic acid and methanol through coupling of CH4, CO and O2 on single-site Rh1O5 anchored in microporous aluminosilicates in solution at ≤150 °C. The activity of these singly dispersed precious metal sites for production of organic oxygenates can reach about 0.10 acetic acid molecules on a Rh1O5 site per second at 150 °C with a selectivity of ~70% for production of acetic acid. It is higher than the activity of free Rh cations by >1000 times. Computational studies suggest that the first C-H bond of CH4 is activated by Rh1O5 anchored on the wall of micropores of ZSM-5; the formed CH3 then couples with CO and OH, to produce acetic acid over a low activation barrier.

18.
Phys Chem Chem Phys ; 20(9): 6440-6449, 2018 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-29445805

RESUMEN

In situ/operando studies of a heterogeneous catalyst are particularly valuable for achieving a fundamental understanding of catalytic mechanisms at a molecular level by establishing a correlation between the observed catalytic performance and the corresponding surface chemistry during catalysis. Herein, CO oxidation on cobalt oxides was studied via ambient pressure X-ray photoelectron spectroscopy (AP-XPS). During CO oxidation on CoO in the temperature range of 140-180 °C, the active surface phase of CoO progressively transforms to Co3O4. Kinetic studies of CO oxidation on the surface phase CoO at 80-120 °C and on the formed Co3O4 at 160-220 °C show that CoO and Co3O4 exhibit different activation barriers: 49.3 kJ mol-1 for CoO and 36.9 kJ mol-1 for Co3O4. This study demonstrates the transition of the active surface phase of a transition metal oxide-based catalyst under catalytic conditions with no change in the bulk phase of the catalyst.

19.
J Phys Chem B ; 122(2): 425-431, 2018 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-28949538

RESUMEN

Atomic scale knowledge of the surface structure of a metal catalyst is essential for fundamentally understanding the catalytic reactions performed on it. A correlation between the true atomic surface structure of a metal catalyst under reaction conditions and the corresponding catalytic performance is the key in pursuing mechanistic insight at a molecular level. Here the surface structures of model, metal catalysts in both ultrahigh vacuum (UHV) and gaseous environments of CO at a wide range of pressures are discussed. The complexity of observed surface structures in CO is illustrated, driving the necessity for visualization of the catalytic metals under realistic reaction conditions. Technical barriers for visualization of metal surfaces in situ at high temperature and high pressure are discussed.

20.
J Am Chem Soc ; 140(3): 954-962, 2018 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-29262678

RESUMEN

Compared to homogeneous catalysis, heterogeneous catalysis allows for ready separation of products from the catalyst and thus reuse of the catalyst. C-C coupling is typically performed on a molecular catalyst which is mixed with reactants in liquid phase during catalysis. This homogeneous mixing at a molecular level in the same phase makes separation of the molecular catalyst extremely challenging and costly. Here we demonstrated that a TiO2-based nanoparticle catalyst anchoring singly dispersed Pd atoms (Pd1/TiO2) is selective and highly active for more than 10 Sonogashira C-C coupling reactions (R≡CH + R'X → R≡R'; X = Br, I; R' = aryl or vinyl). The coupling between iodobenzene and phenylacetylene on Pd1/TiO2 exhibits a turnover rate of 51.0 diphenylacetylene molecules per anchored Pd atom per minute at 60 °C, with a low apparent activation barrier of 28.9 kJ/mol and no cost of catalyst separation. DFT calculations suggest that the single Pd atom bonded to surface lattice oxygen atoms of TiO2 acts as a site to dissociatively chemisorb iodobenzene to generate an intermediate phenyl, which then couples with phenylacetylenyl bound to a surface oxygen atom. This coupling of phenyl adsorbed on Pd1 and phenylacetylenyl bound to Oad of TiO2 forms the product molecule, diphenylacetylene.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...