Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 666: 472-480, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38613970

RESUMEN

All-solid-state lithium batteries (ASSLBs) are considered promising energy storage systems due to their high energy density and inherent safety. However, scalable fabrication of ASSLBs based on transition metal sulfide cathodes through the conventional powder cold-pressing method with ultrahigh stacking pressure remains challenging. This article elucidates a dry process methodology for preparing flexible and high-performance FeS2-based ASSLBs under low stack pressure by utilizing polytetrafluoroethylene (PTFE) binder. In this design, fibrous PTFE interweaves Li6PS5Cl particles and FeS2 cathode components, forming flexible electrolyte and composite cathode membranes. Beneficial to the robust adhesion, the composite cathode and Li6PS5Cl membranes are tightly compacted under a low stacking pressure of 100 MPa which is a fifth of the conventional pressure. Moreover, the electrode/electrolyte interface can sustain adequate contact throughout electrochemical cycling. As expected, the FeS2-based ASSLBs exhibit outstanding rate performance and cyclic stability, contributing a reversible discharged capacity of 370.7 mAh g-1 at 0.3C after 200 cycles. More importantly, the meticulous dQ/dV analysis reveals that the three-dimensional PTFE binder effectively binds the discharge products with sluggish kinetics (Li2S and Fe) to the ion-electron conductive network in the composite cathode, thereby preventing the electrochemical inactivation of products and enhancing electrochemical performance. Furthermore, FeS2-based pouch-type cells are fabricated, demonstrating the potential of PTFE-based dry-process technology to scale up ASSLBs from laboratory-scale mold cells to factory-scale pouch cells. This feasible dry-processed technology provides valuable insights to advance the practical applications of ASSLBs.

2.
J Phys Chem Lett ; 13(15): 3369-3376, 2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35404049

RESUMEN

Modifying the wide band gap semiconductor hexagonal boron nitride (hBN) can bring new chances in photonics. By virtue of the solvothermal/hydrothermal oxidation or functionalization, hBN can be converted into fluorescent nanodots. Until now, it has been a big challenge to drily oxidize hBN and turn it into bright fluorescent structures due to its superior chemical stability. Here, we report the oxidation of multilayer hBN into fluorescent structures by ultraviolet (UV, λ = 172 nm) photodissociated directional oxygen radical [O(3P)] in a gradient magnetic field. The paramagnetic O(3P), produced in a low-pressure O2 atmosphere, drifts toward hBN and then converts it into boron nitride oxide (BNO) micro/nanometer structures constituted by BO, BO2, and O-doped hBN. For a properly oxidized BNO substance, bright and photostable wide-band photoluminescence is realized with nanosecond-scaled lifetimes under the excitation of UV and visible lights.

3.
ACS Appl Mater Interfaces ; 12(49): 55382-55389, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33226760

RESUMEN

Properly cutting graphene into certain high-quality micro-/nanoscale structures in a cost-effective way has a critical role. Here, we report a novel approach to pattern graphene films by H2O-based magnetic-assisted ultraviolet (UV) photolysis under irradiation at 184.9 nm. By virtue of the paramagnetic characteristic, the photo-dissociated hydroxyl [OH(X2Π)] radicals are magnetized and have their oxidation capability highly enhanced through converting into an accelerated directional motion. Meanwhile, the precursor of H2O(X̃1A1) molecules distributes uniformly thanks to its weak diamagnetic characteristic, and there exists no instable diamagnetic intermediate to cause lateral oxidation. Possessing these unique traits, the H2O-based magnetic-assisted UV photolysis has the capability of making graphene microscale patterns with the linewidth down to 8.5 µm under a copper grid shadow mask. Furthermore, it is feasible to pattern graphene films into 40 nm-wide ribbons under ZnO nanowires and realize hybrid graphene/ZnO nanoribbon field-effect transistors with a hole mobility up to 7200 cm2·V-1·s-1. The X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry analyses reveal that OH(X2Π) radicals act as a strong oxidant and that another product of H(12S) adsorbs weakly on graphene.

4.
ACS Appl Mater Interfaces ; 11(46): 43351-43358, 2019 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-31657205

RESUMEN

Graphene-based p-n junction photodiodes have a potential application prospect in photodetection due to their broadband spectral response, large operating bandwidth, and mechanical flexibility. Here, we report an ultraviolet (UV) rewritable p-n junction photodiode in a configuration of graphene coated with an amorphous phosphor of 4-bromo-1,8-naphthalic anhydride derivative polymer (poly-BrNpA). Under moderate UV irradiation, occurrence of photoisomerization reaction in the poly-BrNpA film leads to its drastically modified optical characteristics and a concurrent n-type doping in the underneath graphene. Meanwhile, the poly-BrNpA film, highly sensitive to water molecules, has a capability of restoring graphene to its initial p-type doping status by means of water adsorption. Based on these findings, a lateral graphene/poly-BrNpA p-n junction photodiode, responsive to visible light at the junction interface, can be written by UV irradiation and then erased via water adsorption. The p-n junction photodiode is rewritable upon such repetitive loops showing repeatable optoelectronic properties. This study provides a new scheme and perspective of making graphene-based rewritable p-n junction photodiodes in a flexible and controllable way, and it may contribute to expanding new families of optoelectronic devices based on two-dimensional materials.

5.
Phys Chem Chem Phys ; 19(40): 27353-27359, 2017 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-28971200

RESUMEN

When assisted with an inhomogenous vertical magnetic field, ultraviolet (UV) ozonation turns directional and is testified to be applicable to graphene patterning. Using a more cost-effective low-pressure mercury lamp, we further explore the underlying working mechanism by changing oxygen content, introducing reactive ozone or inert nitrogen molecules, and study the lateral under-oxidation impeded Dirac point shifts for a graphene field-effect transistor under UV irradiation. The paramagnetic oxygen molecule X3Σ accelerates toward graphene with the magnetic moment aligned parallel to the magnetic field. The O(3P) atoms, stemming from such a directional oxygen molecule, have a high initial velocity before being further accelerated, and therefore enhance the oxidation capability compared with those from weak diamagnetic ozone molecules. Intermolecular or atomic-molecular collisions between the high-speed oxygen molecules/atoms and the randomly moved weak diamagnetic molecules, including nitrogen and ozone, appear crucial in deteriorating graphene patterning by increasing the lateral under-oxidation. This study may shed light on our understanding of graphene patterning by magnetic-assisted UV ozonation.

6.
Sci Rep ; 7: 46583, 2017 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-28422180

RESUMEN

Developing an alternative method for fabricating microscale graphene patterns that overcomes the obstacles of organic contamination, linewidth resolution, and substrate damaging is paramount for applications in optoelectronics. Here we propose to pattern chemical vapor deposition grown graphene film through a stencil mask by magnetic-assisted ultraviolet (UV) ozonation under irradiation of a xenon excimer lamp. In this process, the paramagnetic oxygen molecules and photochemically generated oxygen radicals are magnetized and attracted in an inhomogenous external magnetic field. As a consequence, their random motions convert into directional, which can greatly modify or enhance the quality of graphene patterns. Using a ferromagnetic steel mask, an approximately vertical magnetic-field-assisted UV ozonation (BZ = 0.31 T, ∇BZ = 90 T · m-1) has a capability of patterning graphene microstructures with a line width of 29 µm and lateral under-oxidation less than 4 µm. Our approach is applicable to patterning graphene field-effect transistor arrays, and it can be a promising solution toward resist-free, substrate non-damaging, and cost effective microscale patterning of graphene film.

7.
Opt Express ; 18(23): 23994-4002, 2010 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-21164746

RESUMEN

An air-bridged silicon-based photonic crystal coupled-cavity waveguide (PCCCW) connected with an input and output W1 PC waveguide (PCW) was designed and fabricated. We mapped its intensity distributions with a near-field scanning optical microscope (NSOM) at near-infrared wavelengths around 1550 nm. Surprisingly, the intensity distributions demonstrate that the second odd eigenmode dominates in such a PCCCW, even though it possesses a much slower group velocity of light than that of the first even one. Further considering the measured transmission spectrum, we find that the modal profile and impedance matching between the eigenmodes in the PCW and PCCCW plays an important role in the optical propagation efficiency. Mode conversion between the first even and the second odd eigenmode was also detected at the interfaces between the W1 PCW and PCCCW.

8.
ACS Nano ; 4(7): 4033-8, 2010 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-20695517

RESUMEN

We present a multiscale ab initio study of electronic and transport properties of two-dimensional graphene after epoxide functionalization via ozone treatment. The orbital rehybridization induced by the epoxide groups triggers a strong intervalley scattering and changes dramatically the conduction properties of graphene. By varying the coverage density of epoxide defects from 0.1 to 4%, charge conduction can be tuned from a diffusive to a strongly localized regime, with localization lengths down to a few nanometers long. Experimental results supporting the interpretation as a metal-insulator transition are also provided.

9.
J Opt Soc Am A Opt Image Sci Vis ; 27(5): 973-6, 2010 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-20448762

RESUMEN

On the principle of phase-shift mask, the metal segment of a sub-wavelength Ag grating on a quartz substrate is used as a phase-shifting layer in this photolithography method. When the radiation modes of the surface plasmon polaritons (SPPs) excited on the Ag surface have optical phase opposite to that of the waves emitting from the slits, destructive interference occurs and the diffraction limit can be broken through. The SPPs excited on the surface between Ag and water can be transformed into propagation modes in the photoresist. Therefore, nanolithography can be achieved in the quasi-far field with this method.

10.
Chem Pharm Bull (Tokyo) ; 57(1): 99-101, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19122327

RESUMEN

Two new aurantiamides named as cordyceamides A and B were isolated from the culture liquid of Cordyceps sinensis (BERK.) SACC., along with one known compound, aurantiamide acetate. Their structures were elucidated as N-benzoyl-L-tyrosinyl-L-phenylalaninol acetate and N-benzoyl-L-tyrosinyl-L-p-hydroxyphenylalaninol acetate by 1D, 2D-NMR techniques and comparison with literatures.


Asunto(s)
Cordyceps/química , Dipéptidos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Medios de Cultivo/química , Dipéptidos/farmacología , Células HeLa , Humanos , Espectroscopía de Resonancia Magnética
11.
Opt Express ; 14(21): 10014-20, 2006 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-19529395

RESUMEN

An in-plane, three-port filter consisting of input/output waveguides and two point-defect cavities in a 2D PC slab is designed and fabricated, where a new feedback method is introduced, and its transmission properties are measured. The measured minimum output wavelength spacing between two channels is 1.5 nm, which is realized by slightly adjusting the size of the resonant cavities. The measured resonant wavelengths of two cavities agree well with the calculated ones and the quality factors of the cavities are almost the same. It is believed that this kind of filter may be useful in optical integrated circuits with high density.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...