Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Toxicon ; 242: 107694, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38556061

RESUMEN

Snakebite envenomation often leads to severe visceral injuries, including acute liver injury (ALI). However, the toxicity mechanism remains unclear. Moreover, varespladib can directly inhibit phospholipase A2 (PLA2) in snake venom, but its protective effect on snakebite-induced ALI and the mechanism have not been clarified. Previous studies have shown that snake venom PLA2 leads to neuron cell death via reactive oxygen species (ROS), one of the initial factors related to the mitophagy pathway. The present study group also found that ROS accumulation occurred after Naja atra envenoming. Hematoxylin and eosin (H/E) staining and immunohistochemistry (IHC) were performed to identify the expression of inflammatory factors in the liver tissue, and flow cytometry and immunofluorescence were used to detect ROS levels and mitochondrial function. Immunofluorescence and western blotting were also used for detecting mitophagy pathway-related proteins. The results showed that N. atra bite induced ALI by activating mitophagy and inducing inflammation and that varespladib had a protective effect. Collectively, these results showed the pathological mechanism of ALI caused by N. atra bite and revealed the protective effect of varespladib.


Asunto(s)
Acetatos , Indoles , Mitofagia , Fosfolipasas A2 , Mordeduras de Serpientes , Animales , Ratones , Mitofagia/efectos de los fármacos , Fosfolipasas A2/metabolismo , Mordeduras de Serpientes/tratamiento farmacológico , Mordeduras de Serpientes/complicaciones , Cetoácidos/farmacología , Masculino , Especies Reactivas de Oxígeno/metabolismo , Venenos Elapídicos/toxicidad , Hígado/efectos de los fármacos , Hígado/patología , Enfermedad Hepática Inducida por Sustancias y Drogas
2.
Int J Biol Macromol ; 257(Pt 2): 128708, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38096930

RESUMEN

Uranium and thorium of symbiotic relationship commonly appear in one kind of raw or spent ore. The simultaneous enrichment toward both metals in the first step is essential during many hydrometallurgy processing. Therefore bifunctional solid-state ionic liquid supported amidoxime chitosan (ACS) adsorbents were developed to simultaneously adsorb the two metal from the aqueous solution. The adsorption capacity of the bifunctional adsorbents toward uranium and thorium were significantly superior to the ionic liquid-free amidoxime chitosan, obviously proving the synergistic effect. For both uranium and thorium, the adsorption capacity in the consequence of ACS-[N4444][DEHP], ACS-[N4444][EHEHP], ACS-[N1888][DEHP] and ACS-[N1888][EHEHP] prove the steric effect and PO bonding played important roles in the adsorption. Study on isotherms and kinetics demonstrated the adsorption of ionic liquid-ACS adopted monolayer and chemical way. The ΔGo of very small negative values highlighted ionic liquid-ACS were prone to adsorb uranium and thorium. The study showed feasibility of bifunctional solid-state ionic liquid supported amidoxime chitosan adsorbents for Th(IV) and U(VI).


Asunto(s)
Quitosano , Dietilhexil Ftalato , Líquidos Iónicos , Oximas , Uranio , Torio , Adsorción , Uranio/análisis , Concentración de Iones de Hidrógeno , Cinética
3.
Int J Biol Macromol ; 214: 54-66, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35714866

RESUMEN

Exploiting eco-friendly, highly controlled preparation and convenient solid-liquid separation adsorbent to separate uranium from aquatic medium is of importance and in demand. In this study, magnetic ferroferric oxide nanoparticles synthesized through a facile hydrothermal reaction was cross-linked with chitosan. The intermediate product was subsequently chemically grafting with four amino acids such as alanine, serine, glycine or L-cysteine to produce Ala-MCS, Ser-MCS, Gly-MCS and Cys-MCS. The resultants were verified by SEM, EDS, XRD, VSM, FT-IR and XPS. Adsorption of uranium with amino acids-modified magnetic chitosans were carried out. The parameters that affected the adsorption ability, selectivity toward uranium, and reusability have been illustrated. pH 6.5 was the most beneficial for the adsorption. The saturation adsorption capacity of Ala-MCS, Ser-MCS, Gly-MCS, Cys-MCS were found as 658.88 mg/g ± 1.0 %, 616.10 ± 0.3 % mg/g, 646.38 ± 1.8 % mg/g, 653.96 ± 3.4 % mg/g and 409.15 ± 4.6 % mg/g, respectively. The adsorption process was analyzed using kinetics (pseudo-first-order, pseudo-second-order and intraparticle diffusion models) and isotherms models (Langmuir and Freundlich models). The adsorption of uranium on Ala-MCS, Ser-MCS, Gly-MCS and Cys-MCS happened on monolayer and were controlled by chemisorption. The certified high adsorption amount and efficient solid-liquid separation proved amino acids-modified magnetic chitosan are promising adsorbents for removal of uranium from wastewater.


Asunto(s)
Quitosano , Uranio , Contaminantes Químicos del Agua , Adsorción , Aminoácidos , Quitosano/química , Concentración de Iones de Hidrógeno , Cinética , Fenómenos Magnéticos , Espectroscopía Infrarroja por Transformada de Fourier , Uranio/química
4.
Bioresour Technol ; 278: 456-459, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30711219

RESUMEN

A electrochemical adsorption system driven by microbial fuel cell (MFC-adsorption) was developed based on copper(II) hexacyanoferrate(III) (CuHCF) film for cesium (Cs) removal from wastewater. Cs uptake and elution can be simply controlled by regulating the redox states of the CuHCF films. Chemical oxygen demand (COD) removal showed little difference as MFC was connected to adsorption system. Meanwhile, power density and coulombic efficiency of MFC were dramatically reduced. The efficiencies of Cs adsorption and desorption were undesirable. MFC-adsorption technology used for actual nuclear wastewater treatment still has far to go.


Asunto(s)
Fuentes de Energía Bioeléctrica , Cesio/aislamiento & purificación , Cobre/química , Técnicas Electroquímicas , Ferrocianuros/química , Aguas Residuales/química , Adsorción , Análisis de la Demanda Biológica de Oxígeno , Cobre/metabolismo , Ferrocianuros/metabolismo
5.
Appl Microbiol Biotechnol ; 98(23): 9879-87, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25326779

RESUMEN

The effect of a magnetic field (MF) on electricity production and wastewater treatment in two-chamber microbial fuel cells (MFCs) has been investigated. Electricity production capacity could be improved by the application of a low-intensity static MF. When a MF of 50 mT was applied to MFCs, the maximum voltage, total phosphorus (TP) removal efficiency, and chemical oxygen demand (COD) removal efficiency increased from 523 ± 2 to 553 ± 2 mV, ∼93 to ∼96 %, and ∼80 to >90 %, respectively, while the start-up time and coulombic efficiency decreased from 16 to 10 days and ∼50 to ∼43 %, respectively. The MF effects were immediate, reversible, and not long lasting, and negative effects on electricity generation and COD removal seemed to occur after the MF was removed. The start-up and voltage output were less affected by the MF direction. Nitrogen compounds in magnetic MFCs were nitrified more thoroughly; furthermore, a higher proportion of electrochemically inactive microorganisms were found in magnetic systems. TP was effectively removed by the co-effects of microbe absorption and chemical precipitation. Chemical precipitates were analyzed by a scanning electron microscope capable of energy-dispersive spectroscopy (SEM-EDS) to be a mixture of phosphate, carbonate, and hydroxyl compounds.


Asunto(s)
Fuentes de Energía Bioeléctrica/microbiología , Electricidad , Campos Magnéticos , Aguas Residuales/microbiología , Purificación del Agua , Análisis de la Demanda Biológica de Oxígeno , Carbonatos/análisis , Hidróxidos/análisis , Microscopía Electrónica de Rastreo , Compuestos de Nitrógeno/metabolismo , Fosfatos/análisis , Fósforo/análisis , Espectrometría por Rayos X , Aguas Residuales/química
6.
Bioresour Technol ; 164: 402-7, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24880930

RESUMEN

Performance of a two-chamber microbial fuel cell (MFC) was evaluated with the influence of cathodic dissolved oxygen (DO). The maximum voltage, coulombic efficiency and maximum power density outputs of MFC decreased from 521 to 303 mV, 52.48% to 23.09% and 530 to 178 mW/m(2) with cathodic DO declining. Furthermore, a great deal of total phosphorus (TP) was removed owing to chemical precipitation (about 80%) and microbial absorption (around 4-17%). COD was first removed in anode chamber (>70%) then in cathode chamber (<5%). Most of nitrogen was removed when the cathodic DO was at low levels. Chemical precipitates formed in cathode chamber were verified as phosphate, carbonate and hydroxyl compound with the aid of scanning electron microscope capable of energy dispersive spectroscopy (SEM-EDS), X-ray diffractometer (XRD) and Fourier transform infrared spectroscopy (FTIR).


Asunto(s)
Fuentes de Energía Bioeléctrica , Electricidad , Nitrógeno/aislamiento & purificación , Oxígeno/farmacología , Fósforo/aislamiento & purificación , Análisis de la Demanda Biológica de Oxígeno , Precipitación Química , Electrodos , Concentración de Iones de Hidrógeno , Solubilidad , Aguas Residuales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA