Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Adv Res ; 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38565404

RESUMEN

BACKGROUND: Glioblastoma (GBM) is the most common malignant tumour of the central nervous system. Despite recent advances in multimodal GBM therapy incorporating surgery, radiotherapy, systemic therapy (chemotherapy, targeted therapy), and supportive care, the overall survival (OS) remains poor, and long-term survival is rare. Currently, the primary obstacles hindering the effectiveness of GBM treatment are still the blood-brain barrier and tumor heterogeneity. In light of its substantial advantages over conventional therapies, such as strong penetrative ability and minimal side effects, low-frequency magnetic fields (LF-MFs) therapy has gradually caught the attention of scientists. AIM OF REVIEW: In this review, we shed the light on the current status of applying LF-MFs in the treatment of GBM. We specifically emphasize our current understanding of the mechanisms by which LF-MFs mediate anticancer effects and the challenges faced by LF-MFs in treating GBM cells. Furthermore, we discuss the prospective applications of magnetic field therapy in the future treatment of GBM. Key scientific concepts of review: The review explores the current progress on the use of LF-MFs in the treatment of GBM with a special focus on the potential underlying mechanisms of LF-MFs in anticancer effects. Additionally, we also discussed the complex magnetic field features and biological characteristics related to magnetic bioeffects. Finally, we proposed a promising magnetic field treatment strategy for future applications in GBM therapy.

2.
Transl Psychiatry ; 14(1): 1, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172115

RESUMEN

Major depressive disorder (MDD) is a globally prevalent and highly disabling disease characterized by dysfunction of large-scale brain networks. Previous studies have found that static functional connectivity is not sufficient to reflect the complicated and time-varying properties of the brain. The underlying dynamic interactions between brain functional networks of MDD remain largely unknown, and it is also unclear whether neuroimaging-based dynamic properties are sufficiently robust to discriminate individuals with MDD from healthy controls since the diagnosis of MDD mainly depends on symptom-based criteria evaluated by clinical observation. Resting-state functional magnetic resonance imaging (fMRI) data of 221 MDD patients and 215 healthy controls were shared by REST-meta-MDD consortium. We investigated the spatial-temporal dynamics of MDD using co-activation pattern analysis and made individual diagnoses using support vector machine (SVM). We found that MDD patients exhibited aberrant dynamic properties (such as dwell time, occurrence rate, transition probability, and entropy of Markov trajectories) in some transient networks including subcortical network (SCN), activated default mode network (DMN), de-activated SCN-cerebellum network, a joint network, activated attention network (ATN), and de-activated DMN-ATN, where some dynamic properties were indicative of depressive symptoms. The trajectories of other networks to deactivated DMN-ATN were more accessible in MDD patients. Subgroup analyses also showed subtle dynamic changes in first-episode drug-naïve (FEDN) MDD patients. Finally, SVM achieved preferable accuracies of 84.69%, 76.77%, and 88.10% in discriminating patients with MDD, FEDN MDD, and recurrent MDD from healthy controls with their dynamic metrics. Our findings reveal that MDD is characterized by aberrant dynamic fluctuations of brain network and the feasibility of discriminating MDD patients using dynamic properties, which provide novel insights into the neural mechanism of MDD.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Trastorno Depresivo Mayor/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Vías Nerviosas/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos
3.
Quant Imaging Med Surg ; 13(12): 8336-8349, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38106319

RESUMEN

Background: Rhabdomyolysis (RM)-induced acute kidney injury (AKI) is a common renal disease with low survival rate and inadequate prognosis. In this study, we investigate the feasibility of chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) for assessing the progression of RM-induced AKI in a mouse model. Methods: AKI was induced in C57BL/6J mice via intramuscular injection of 7.5 mL/kg glycerol (n=30). Subsequently, serum creatinine (SCr), blood urea nitrogen (BUN), and hematoxylin-eosin (HE) and Masson staining, were performed. Longitudinal CEST-MRI was conducted on days 1, 3, 7, 15, and 30 after AKI induction using a 7.0-T MRI system. CEST-MRI quantification parameters including magnetization transfer ratio (MTR), MTR asymmetric analysis (MTRasym), apparent amide proton transfer (APT*), and apparent relayed nuclear Overhauser effect (rNOE*) were used to investigate the feasibility of detecting RM-induced renal damage. Results: Significant increases of SCr and BUN demonstrated established AKI. The HE staining revealed various degrees of tubular damage, and Masson staining indicted an increase in the degree of fibrosis in the injured kidneys. Among CEST parameters, the cortical MTR presented a significant difference, and it also showed the best diagnostic performance for AKI [area under the receiver operating characteristic curve (AUC) =0.915] and moderate negative correlations with SCr and BUN. On the first day of renal damage, MTR was significantly reduced in cortex (22.7%±0.04%, P=0.013), outer stripe of outer medulla (24.7%±1.6%, P<0.001), and inner stripe of outer medulla (27.0%±1.5%, P<0.001) compared to the control group. Longitudinally, MTR increased steadily with AKI progression. Conclusions: The MTR obtained from CEST-MRI is sensitive to the pathological changes in RM-induced AKI, indicating its potential clinical utility for the assessment of kidney diseases.

4.
J Magn Reson Imaging ; 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37881827

RESUMEN

BACKGROUND: Ischemia reperfusion injury (IRI)-induced acute kidney injury (AKI) may occur after renal ischemic injury. There is a lack of an accurate and comprehensive detection technique for IRI-AKI. PURPOSE: To longitudinally evaluate IRI-AKI in rats by renal structure, function, and metabolites using multi-parametric MRI (mpMRI). STUDY TYPE: Prospective. ANIMAL MODEL: Forty-eight rats undergoing IRI-AKI. FIELD STRENGTH/SEQUENCE: 7-T, T1 mapping, and arterial spin labeling (ASL): echo planar imaging (EPI) sequence; blood oxygen level-dependent (BOLD): gradient recalled echo (GRE) sequence; T2 mapping, quantitative magnetization transfer (qMT), and chemical exchange saturation transfer (CEST): rapid acquisition with relaxation enhancement (RARE) sequence. ASSESSMENT: The mpMRI for IRI-AKI was conducted at 0 (control), 1, 3, 7, 14, and 28 days, all included eight rats. The longitudinal mpMRI signal of manually outlined cortex, outer stripe of the outer medulla (OSOM), inner stripe of the outer medulla, and medulla plus pelvis were calculated and compared, their diagnosis performance for IRI-AKI also been evaluated. STATISTICAL TESTS: Pearson correlations analysis for correlation between mpMRI signal and renal injury, unpaired t-tests for comparing the signal changes, and receiver operating characteristics (ROC) analysis was used to identify most sensitive indicator of mpMRI. A P-value <0.05 was considered statistically significant. RESULTS: Compared with control kidneys, the T1 and T2 values of the cortex and medulla in IRI kidneys increased and reached their highest values on day 14, and the kidneys also showed the most severe edema and segments blurred. The RBF in the cortex and OSOM showed a significant decline after day 3. The BOLD signal in the OSOM largest increased on day 28. The cortical PSR and the amine-CEST both decreased with IRI-AKI progression, and amine-CEST achieved the highest AUC for the diagnosis (0.899). DATA CONCLUSION: Multi-parametric MRI may show comprehensive variations in IRI-AKI, and amine-CEST may exhibit the highest accuracy for diagnosis of IRI-AKI. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 2.

6.
Sensors (Basel) ; 23(7)2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37050568

RESUMEN

To estimate the direction of arrival (DOA) of a linear frequency modulation (LFM) signal in a low signal-to-noise ratio (SNR) hydroacoustic environment by a small aperture array, a novel deconvolved beamforming method based on fractional Fourier domain delay-and-sum beamforming (FrFB) was proposed. Fractional Fourier transform (FrFT) was used to convert the received signal into the fractional Fourier domain, and delay-and-sum beamforming was subsequently performed. Noise resistance was acquired by focusing the energy of the LFM signal distributed in the time-frequency domain. Then, according to the convolution structure of the FrFB complex output, the influence of the fractional Fourier domain complex beam pattern was removed by deconvolution, and the target spatial distribution was restored. Therefore, an improved spatial resolution of DOA estimation was obtained without increasing the array aperture. The simulation and experimental results show that, with a small aperture array at low SNR, the proposed method possesses higher spatial resolution than FrFB and frequency-domain deconvolved conventional beamforming.

7.
Chemosphere ; 322: 138209, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36822518

RESUMEN

Triazole antifungal pesticides work by inhibiting the activity of lanosterol-14-α-demethylase, a member of cytochrome P450 enzymes (CYPs), but this effect is non-specific. Bile acids (BAs) are important physical surfactants for lipids absorption in intestine, and synthesized by CYPs 7A1/27A1. Thus, we presume that triazole exposure might influence the therapeutic effect or safety of oral medication through disturbing the BAs pool, even though the exposure is under an acceptable daily intake (ADI) dose. Short- and long-term of ADI dose tebuconazole (TEB) exposure animal models were established through various routes, and statins with different hydrophilic and lipophilic properties were gavaged. It exhibited that the activity of CYP7A1/27A1 was indeed inhibited but the expression was up-regulated, the BAs pool was changed either the content and the composition, and the absorption behavior of statins with strong and medium degree of lipid-solubility were significantly changed. A series of experiments performed on models of intestinal mucus, Caco-2 cell monolayer and Caco-2/HT29 co-culture system revealed that the TEB-exposure induced BAs disturbance made impacts on drug absorption in many aspects, including drug solubility and the structure of intestinal barriers. This study suggests us to be more alert about the hazard of pesticides residues for elderly and chronically ill groups.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Plaguicidas , Humanos , Animales , Ácidos y Sales Biliares , Células CACO-2 , Nivel sin Efectos Adversos Observados
8.
ACS Appl Mater Interfaces ; 14(35): 39885-39895, 2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36031928

RESUMEN

Contrast agents (CAs) in magnetic resonance imaging generally involve the dissociative Gd3+. Because of the limited ligancy of Gd3+, the balance between Gd3+ coordination stability (reducing the concentration of dissociative Gd3+) and increases in the number of coordination water molecules (enhancing the relaxivity) becomes crucial. Herein, the key factor of the synergistic effect between the O- and N-containing groups of graphene quantum dots for the structural design of CAs with both high relaxivity and low toxicity was obtained. The nitrogen-doped graphene quantum dots (NGQDs) with an O/N ratio of 0.4 were selected to construct high-relaxivity magnetic resonance imaging (MRI)-fluorescence dual-mode CAs. The coordination stability of Gd3+ can be increased through the synergetic coordination of O- and N-containing groups. The synergetic coordination of O- and N-containing groups can result in the short residency time of the water ligand and achieve high relaxivity. The resulting CAs (called NGQDs-Gd) exhibit a high relaxivity of 32.04 mM-1 s-1 at 114 µT. Meanwhile, the NGQDs-Gd also emit red fluorescence (614 nm), which can enable the MRI-fluorescence dual-mode imaging as the CAs. Moreover, the bio-toxicity and tumor-targeting behavior of NGQDs-Gd were also evaluated, and NGQDs-Gd show potential in MRI-fluorescence imaging in vivo.


Asunto(s)
Grafito , Puntos Cuánticos , Medios de Contraste/química , Grafito/química , Imagen por Resonancia Magnética/métodos , Nitrógeno/química , Oxígeno , Puntos Cuánticos/química , Agua/química
9.
Quant Imaging Med Surg ; 12(7): 3889-3902, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35782235

RESUMEN

Background: As an essential physiological parameter, pH plays a critical role in maintaining cellular and tissue homeostasis. The ratiometric chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) method using clinically approved iodinated agents has emerged as one of the most promising noninvasive techniques for pH assessment. Methods: In this study, we investigated the ability to use the combination of two different nonequivalent amide protons, chosen from five iodinated agents, namely iodixanol, iohexol, iobitridol, iopamidol, and iopromide, for pH measurement. The ratio of two nonequivalent amide CEST signals was calculated and compared for pH measurements in the range of 5.6 to 7.6. To quantify the CEST signals at 4.3 and 5.5 parts per million (ppm), we employed two analytic methods: magnetization transfer ratio asymmetry and Lorentzian fitting analysis. Lastly, the established protocol was used to measure the pH values in healthy rat kidneys (n=5). Results: The combination of iodixanol and iobitridol at a ratio of 1:1 was found to be suitable for pH mapping. The saturation power level (B1) was also investigated, and a low B1 of 1.5 µT was adopted for subsequent pH measurements. Improved precision and an extended pH detection range were achieved using iodixanol and iobitridol (1:1 ratio) and a single low B1 of 1.5 µT in vitro. In vivo renal pH values were measured as 7.23±0.09, 6.55±0.15, and 6.29±0.23 for the cortex, medulla, and calyx, respectively. Conclusions: These results show that the ratiometric CEST method using two iodinated agents with nonequivalent amide protons could be used for in vivo pH mapping of the kidney under a single low B1 saturation power.

10.
Free Radic Res ; 56(3-4): 303-315, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35746859

RESUMEN

Overproduction of reactive oxygen species (ROS) during oxidative stress is hallmark of acute kidney injury (AKI), which induced the damage to the renal cells and mitochondrial injury. In this contribution, we prepared mitochondrial targeted nitroxide, which linked 3-carboxy-2,2,5,5-tetramethylpyrrolidine 1-oxyl (carboxy-PROXYL) with (2-aminoethyl)triphenylphosphonium bromide (TPP), named TPP-PROXYL to eliminate the ROS in situ and image the oxidative stress reaction by MRI. 2,7-Dichlorodi-hydrofluorescein diacetate (DCFH-DA) staining, mitochondrial membrane potential assay (JC-1) staining and transmission electron microscope (TEM) experiments were processed to verify that TPP-PROXYL could target mitochondria, scavenge the ROS, and prevent damage to mitochondria in live cells. Contrast enhanced MRI also been used to monitor these redox reaction in AKI model. TPP-PROXYL demonstrated excellent ROS T1-weighted magnetic resonance imaging enhancement in vitro and in vivo, with r1 value about 0.190 mM-1 s-1. In vivo AKI treatment experiments proved that TPP-PROXYL could improve the survival rate of mice and inhibit kidney damage. Moreover, the great ROS scavenging capability and the renal damage reduction during AKI treatment of TPP-PROXYL was verified via MR imaging technology. Collectively, this research provides TPP-PROXYL would serve as a powerful platform to realize ROS scavenging, treatment, and MR imaging of AKI.


Asunto(s)
Lesión Renal Aguda , Mitocondrias , Lesión Renal Aguda/diagnóstico por imagen , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/metabolismo , Humanos , Imagen por Resonancia Magnética , Mitocondrias/metabolismo , Óxidos de Nitrógeno , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
11.
J Nanobiotechnology ; 20(1): 18, 2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-34983564

RESUMEN

BACKGROUND: Combining the multimodal imaging and synergistic treatment in one platform can enhance the therapeutic efficacy and diagnosis accuracy. RESULTS: In this contribution, innovative Mn-doped Prussian blue nanoparticles (MnPB NPs) were prepared via microemulsion method. MnPB NPs demonstrated excellent T1 and T2 weighted magnetic resonance imaging (MRI) enhancement in vitro and in vivo. The robust absorbance in the near infrared range of MnPB NPs provides high antitumor efficacy for photothermal therapy (PTT) and photoacoustics imaging property. Moreover, with the doping of Mn, MnPB NPs exhibited excellent Fenton reaction activity for chemodynamic therapy (CDT). The favorable trimodal imaging and Fenton reaction enhanced mild temperature photothermal therapy in vitro and in vivo were further confirmed that MnPB NPs have significant positive effectiveness for integration of diagnosis and treatment tumor. CONCLUSIONS: Overall, this Mn doped Prussian blue nanoplatform with multimodal imaging and chemodynamic/mild temperature photothermal co-therapy provides a reliable tool for tumor treatment.


Asunto(s)
Ferrocianuros/química , Imagen por Resonancia Magnética/métodos , Nanopartículas del Metal/química , Técnicas Fotoacústicas/métodos , Terapia Fototérmica/métodos , Animales , Línea Celular Tumoral , Femenino , Humanos , Manganeso/química , Ratones , Ratones Desnudos , Fotoquimioterapia , Nanomedicina Teranóstica
12.
NMR Biomed ; 35(2): e4633, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34658086

RESUMEN

BACKGROUND: Nowadays, the drive towards high-field MRI is fueled by the pursuit of higher signal-to-noise ratio, spatial resolution, and imaging speed. However, high field strength is associated with field inhomogeneity, acceleration of T2 * decay, and increased chemical shift, which may pose challenges to conventional MRI for fat quantification in complex tissues such as bone marrow. With proton MRI spectroscopy (1 H-MRS), on the other hand, it is difficult to produce high resolution. As a novel alternative fat quantification method, high-resolution Z-spectral MRI (ZS-MRI) can achieve fat quantification by acquiring direct saturated images of both fat and water under the same TE , which may be less affected by T2 * decay and field inhomogeneity. PURPOSE: To demonstrate ZS-MRI for marrow adipose tissue (MAT) quantification in rat's lumbar spine and the early detection of MAT changes with age. METHODS: The accuracy of ZS-MRI for fat quantification at ultra-high-field MRI (7 T) was verified with MRS and conventional Dixon MRI in water-oil mixed phantoms with varying fat fraction (FF). Dixon MRI data were processed with iterative decomposition of water and fat with echo asymmetry and least-squares estimation. ZS-MRI was then used to longitudinally monitor the adiposity in the lumbar spine of young healthy rats at 13, 17, and 21 weeks to detect the early changes of FF with age in MAT. Hematoxylin-eosin staining of lumbar spines from separated rat groups was performed for verification. RESULTS: In ex vivo phantom experiments, both Dixon MRI and ZS-MRI were well correlated with 1 H-MRS for the quantification of FF at 7 T (R > 0.99). Compared with Dixon MRI, ZS-MRI showed reduced image artifacts due to field inhomogeneity and presented better agreement with 1 H-MRS for the early detection of increased MAT due to age at 7 T (ZS-MRI R = 0.78 versus Dixon MRI R = 0.34). The increased MAT FF due to age was confirmed by histology. CONCLUSION: ZS-MRI proves itself as an alternative fat quantification method for bone marrow in rats at 7 T.


Asunto(s)
Adiposidad , Médula Ósea/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Animales , Espectroscopía de Resonancia Magnética , Ratas , Ratas Sprague-Dawley
13.
Front Public Health ; 9: 778340, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34970527

RESUMEN

The novel coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread worldwide, and the WHO declared it a pandemic on March 11, 2020. Clinical characteristics and epidemiology features of patients infected with SARS-CoV-2 have been explored in the previous study. However, little is known about the combinative association of liver dysfunction and abnormal interleukins (ILs) in severe patients with COVID-19. This study was designed to estimate whether liver dysfunction and abnormal ILs could predict the severity of COVID-19. This study integrated liver function data and ILs data in patients with COVID-19 and found that liver injury and two ILs, interleukin-2 receptor (IL-2R) and interleukin-6 (IL-6), were closely related to the prognosis of patients with COVID-19. This study may give more exact information to clinicians about the prognosis of patients with COVID-19. In addition, this correlational study between liver disorder and ILs may provide a new vision to diagnosis and treatment in patients.


Asunto(s)
COVID-19 , Interleucina-6 , Hígado/patología , Receptores de Interleucina-2/sangre , COVID-19/diagnóstico , Humanos , Interleucina-6/sangre , Pandemias
14.
Angew Chem Int Ed Engl ; 60(52): 27318-27323, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34714973

RESUMEN

Perfluoro-tert-butylation reaction has long remained a challenging task. We now report the use of 1,1-dibromo-2,2-bis(trifluoromethyl)ethylene (DBBF) as a practical reagent for perfluoro-tert-butylation reactions for the first time. Through a consecutive triple-fluorination process with DBBF and CsF, the (CF3 )3 C- species can be liberated and observed, which is able to serve as a robust nucleophilic perfluoro-tert-butylating agent for various electrophiles. The power of this synthetic protocol is evidenced by the efficient synthesis of structurally diverse perfluoro-tert-butylated molecules. Multiple applications demonstrate the practicability of this method, as well as the superiority of perfluoro-tert-butylated compounds as sensitive probes. The perfluoro-tert-butylated product was successfully applied in 1 H- and 19 F-magnetic resonance imaging (MRI) experiment with an ultra-low field (ULF) MRI system.

15.
Sens Actuators B Chem ; 337: 129786, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33753963

RESUMEN

The rapid and sensitive diagnosis of the highly contagious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is one of the crucial issues at the outbreak of the ongoing global pandemic that has no valid cure. Here, we propose a SARS-CoV-2 antibody conjugated magnetic graphene quantum dots (GQDs)-based magnetic relaxation switch (MRSw) that specifically recognizes the SARS-CoV-2. The probe of MRSw can be directly mixed with the test sample in a fully sealed vial without sample pretreatment, which largely reduces the testers' risk of infection during the operation. The closed-tube one-step strategy to detect SARS-CoV-2 is developed with home-made ultra-low field nuclear magnetic resonance (ULF NMR) relaxometry working at 118 µT. The magnetic GQDs-based probe shows ultra-high sensitivity in the detection of SARS-CoV-2 due to its high magnetic relaxivity, and the limit of detection is optimized to 248 Particles mL‒1. Meanwhile, the detection time in ULF NMR system is only 2 min, which can significantly improve the efficiency of detection. In short, the magnetic GQDs-based MRSw coupled with ULF NMR can realize a rapid, safe, and sensitive detection of SARS-CoV-2.

16.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-942550

RESUMEN

Objective: To explore the clinical application of supraclavicular fasciocutaneous island flap (SIF) in the repair of tracheal defect. Methods: From May 2016 to March 2021, the clinical data of 10 patients (8 males,2 females,aged 27-73 years old) were retrospectively analyzed who underwent repair surgery with SIF for trachea defects after resection of cervical or thoracic tumors, including 2 cases of laryngotracheal adenoid cystic carcinoma, 2 cases of laryngeal carcinoma, 3 cases of esophageal carcinoma, 2 cases of thyroid carcinoma and one case of parathyroid carcinoma. All of the primary tumors were at T4. The outcomes of 10 cases with tracheal defect repaired by SIF were evaluated. Results: The areas of the SIF were (3-7) cm × (6-10) cm, the thicknesses of the flaps were 8-11 mm, and the lengths of the pedicles were 10-15 cm. The blood supply of the SIF came from the transverse carotid artery. The skin defects of the donor areas of the shoulders were directly closed. After 1-60 months of follow-up, all the flaps survived. The flaps, tracheas as well as shoulder wounds healed well. Conclusion: The SIF is suitable for the repair of tracheal defects. It has perfect thickness compatible with the trachea. The technique is simple and microsurgical technique is not needed, with a good application prospect.


Asunto(s)
Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Procedimientos de Cirugía Plástica , Estudios Retrospectivos , Trasplante de Piel , Colgajos Quirúrgicos , Tráquea , Resultado del Tratamiento
17.
J Magn Reson ; 317: 106775, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32598279

RESUMEN

In ultra-low-field magnetic resonance imaging (ULF MRI) working in the micro-tesla magnetic field range, the superconducting quantum interference device (SQUID) as the signal detector is very susceptible to electromagnetic interference (EMI) so that the system normally works in a shielded room. However, the leakage of EMI in the shielded room may still seriously reduce the system performance. In order to improve the electromagnetic compatibility of the system, we designed a microwave absorbing composite, graphene/Cu/nylon fabric (GCN fabric). In this design, high shielding effectiveness and low-noise performance of the EMI shielding material are equally crucial due to the extremely sensitive detection with SQUID. The shielding effectiveness of 5-layer fabric ranges between 30 dB and 67 dB from 30 MHz to 3 GHz and its maximum appears at 60 MHz. Furthermore, GCN fabric introduces little extra system noise when applied in the ULF MRI system with magnetic field noise of 0.8 fT/Hz at 5 kHz. The SQUID unlocked tuned signal is thus increased by 33% and the signal-to-noise ratio of MRI image is increased by a factor of 4.3. In future, portable and inexpensive unshielded ULF MRI with low-noise might be realized by potential optimization on the component and preparation technology of GCN fabric.

18.
Biomaterials ; 250: 120056, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32339859

RESUMEN

The design of contrast agents (CAs) with high magnetic relaxivities is a key issue in the field of magnetic resonance imaging (MRI). The traditional strategy employed is aimed at optimizing the structural design of the magnetic atoms in the CA. However, it is difficult to obtain an agent with magnetic relaxivity over 100 mM-1 s-1 using this approach. In this work, we demonstrate that modulation of the localized superacid microenvironment of certain CAs (Gd3+ loaded polyethylene glycol modified graphene oxide quantum dots or 'GPG' for short) can effectively enhance the longitudinal magnetic relaxivities (r1) by accelerating proton exchange. r1 values of a series of GPGs are significantly increased by 20-30 folds compared to commercially available CAs over a wide range of static magnetic field strengths (e.g. 210.9 mM-1 s-1vs. 12.3 mM-1 s-1 at 114 µT, 127.0 mM-1 s-1vs. 4.9 mM-1 s-1 at 7.0 T). GPG aided MRI images is then acquired both in vitro and in vivo with low biotoxicities. Furthermore, folic-acid-modified GPG is demonstrated suitable for MRI-fluorescence dual-modal tumor targeting imaging in animals with more than 98.3% specific cellular uptake rate.


Asunto(s)
Grafito , Neoplasias , Puntos Cuánticos , Animales , Medios de Contraste , Imagen por Resonancia Magnética , Microambiente Tumoral
19.
Sensors (Basel) ; 19(16)2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-31443310

RESUMEN

Low field (LF) nuclear magnetic resonance (NMR) shows potential advantages to study pure heteronuclear J-coupling and observe the fine structure of matter. Power-line harmonics interferences and fixed-frequency noise peaks might introduce discrete noise peaks into the LF-NMR spectrum in an open environment or in a conductively shielded room, which might disturb J-coupling spectra of matter recorded at LF. In this paper, we describe a multi-channel sensor configuration of superconducting quantum interference devices, and measure the multiple peaks of the 2,2,2-trifluoroethanol J-coupling spectrum. For the case of low signal to noise ratio (SNR) < 1, we suggest two noise suppression algorithms using discrete wavelet analysis (DWA), combined with either least squares method (LSM) or gradient descent (GD). The de-noising methods are based on spatial correlation of the interferences among the superconducting sensors, and are experimentally demonstrated. The DWA-LSM algorithm shows a significant effect in the noise reduction and recovers SNR > 1 for most of the signal peaks. The DWA-GD algorithm improves the SNR further, but takes more computational time. Depending on whether the accuracy or the speed of the de-noising process is more important in LF-NMR applications, the choice of algorithm should be made.

20.
Nan Fang Yi Ke Da Xue Xue Bao ; 39(5): 528-532, 2019 May 30.
Artículo en Chino | MEDLINE | ID: mdl-31140415

RESUMEN

OBJECTIVE: To evaluate the changes in renal oxygenation in rats with acute aristolochic acid nephropathy using blood oxygenation level-dependent (BOLD) magnetic resonance imaging (MRI) at 7.0T. METHODS: Wistar rats were randomly divided into AAN group (n=18) and control group (n=6) for intraperitoneal injections of AAI at 40 mg/kg and PEG400, respectively, on a daily basis for 6 consecutive days. All the control rats and 6 rats from AAN group underwent BOLD MRI scan before and at 2, 4, and 6 days after the initial injection for measuring renal cortical and medullary R2* values. At each of the 4 time points, 3 rats in AAN group were sacrificed for histological evaluation; the control rats were examined at 6 days after the initial injection. RESULTS: The cortical and medullary R2* values of the rats in AAN group on days 4 and 6 were significantly higher than those in the control group (P < 0.05). In AAN group, the cortical R2* values showed no obvious changes on day 2 as compared with the baseline values, but increased significantly on day 4 (P < 0.05) and day 6 (P < 0.01); the medullary R2* values increased progressively and were significantly higher than the baseline values on day 4 (P < 0.01) and day 6 (P < 0.01). In the control group, no significant changes were detected in either cortical or medullary R2* values throughout the experiment. CONCLUSIONS: BOLD MRI allows non-invasive measurement of renal oxygenation levels in rats with AAN. The increase of renal cortical and medullary R2* values, and particularly the latter, indicates a lowered renal oxygenation level, which provides potentially useful information for clinical decisions.


Asunto(s)
Ácidos Aristolóquicos , Enfermedades Renales , Oxígeno , Animales , Riñón , Enfermedades Renales/metabolismo , Imagen por Resonancia Magnética , Distribución Aleatoria , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...