Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Commun Signal ; 21(1): 364, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38129926

RESUMEN

The association between capsaicin, the major natural pungent compound of chili peppers, and gastric cancer progression has engendered conflicting findings. In this work, we sought to explore the character of a high capsaicin diet in gastric cancer metastasis and its possible mechanism. The impact of high capsaicin consumption on gastric cancer metastasis was investigated in vivo (xenograft mouse and zebrafish models) and in vitro (biochemical and molecular assays). It was demonstrated that high diet of capsaicin gave rise to accelerate tumor metastasis, which was partially mediated by elevating the expression of transient receptor potential vanilloid 1 (TRPV1) in gastric cancer cells. Importantly, we found that genetic depletion of TRPV1 could reduce gastric cancer metastasis by diminishing the motility of tumor cells in vitro, but acted poorly in xenograft mouse model. Considering the distribution of capsaicin in vivo, 16S rRNA sequencing and fecal microbiota transplantation (FMT) were used to appraise whether the gut microbiota involved in the high capsaicin diet induced metastasis. It was demonstrated that the level of Firmicutes and Clostridiales was expressively boosted following the high consumption of capsaicin. This microbial shift contributed to the increased peripheral 5-hydroxytryptamine (5-HT) levels, yielding the aggravated metastatic burden. Collectively, our findings highlighted the potential risk of high capsaicin diet in promoting gastric cancer metastasis by virtue of modulating TRPV1 expression and gut microbiota composition, indicating the importance of controlled consumption of chili peppers for patients with gastric cancer. Video Abstract.


Asunto(s)
Antineoplásicos , Microbioma Gastrointestinal , Neoplasias Gástricas , Canales de Potencial de Receptor Transitorio , Humanos , Animales , Ratones , Capsaicina/farmacología , ARN Ribosómico 16S , Pez Cebra/metabolismo , Canales Catiónicos TRPV/metabolismo , Proteínas de Pez Cebra/metabolismo
2.
mSystems ; 8(6): e0073223, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37921463

RESUMEN

IMPORTANCE: This study sheds light on that treatment with Clostridium tyrobutyricum but not Clostridium butyricum is entitled to protect against necrotizing enterocolitis (NEC) development potentially. The mechanisms behind the opposite effect on NEC may result in different modulation on the level of Akkermansia muciniphila, which is deeply associated with intestinal homoeostasis. Briefly, through improving the abundance of A. muciniphila to alleviate intestinal inflammation and enhance intestinal barrier integrity, C. tyrobutyricum supplement may become a promising therapy for NEC.


Asunto(s)
Clostridium butyricum , Clostridium tyrobutyricum , Enterocolitis Necrotizante , Enfermedades Fetales , Enfermedades del Recién Nacido , Probióticos , Femenino , Recién Nacido , Humanos , Probióticos/uso terapéutico , Enterocolitis Necrotizante/prevención & control , Intestinos
3.
J Oncol ; 2023: 3144086, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36844875

RESUMEN

Background: Non-small cell lung cancer (NSCLC) is still a slightly less orphan disease after immunotherapy, and routine treatment has low efficiency and adverse events. Ginseng is commonly used in the treatment of NSCLC. The purpose of this study is to assess the efficacy and hemorheological indexes of ginseng and its active components in patients with non-small cell lung cancer. Methods: A comprehensive literature search was performed in PubMed, the Cochrane Library, Medline (Ovid), the Web of Science, Embase, CKNI, Wan Fang, VIP, and SinoMed up to July 2021. Only randomized controlled trials evaluating ginseng in combination with chemotherapy versus chemotherapy alone in NSCLC patients were included. Primary outcomes included patients' condition after using ginseng or its active components. Secondary outcomes included changes in immune cells, cytokines, and secretions in serum. Data were extracted by two independent individuals, and the Cochrane Risk of Bias tool version 2.0 was applied for the included studies. Systematic review and meta-analysis were performed by RevMan 5.3 software. Results: The results included 1480 cases in 17 studies. The results of the integration of clinical outcomes showed that the treatment of ginseng (or combination of ginseng with chemotherapy) can improve the quality of life for patients with NSCLC. Analysis of immune cell subtypes revealed that ginseng and its active ingredients can upregulate the percentages of antitumor immunocyte subtypes and downregulate the accounts of immunosuppressive cells. In addition, a reduction of the inflammatory level and an increase of antitumor indicators in serum were reported. Meta-analysis showed that Karnofsky score: WMD = 16, 95% CI (9.52, 22.47); quality-of-life score: WMD = 8.55, 95%CI (6.08, 11.03); lesion diameter: WMD = -0.45, 95% CI (-0.75, -0.15); weight: WMD = 4.49, 95% CI (1.18, 7.80); CD3+: WMD = 8.46, 95% CI (5.71, 11.20); CD4+: WMD = 8.45, 95% CI (6.32, 10.57)+; CD8+: WMD = -3.76, 95% CI (-6.34, -1.18); CD4+/CD8+: WMD = 0.32, 95% CI (0.10, 0.53); MDSC: WMD = -2.88, 95% CI (-4.59, -1.17); NK: WMD = 3.67, 95% CI (2.63, 4.71); Treg: WMD = -1.42, 95% CI (-2.33, -0.51); CEA: WMD = -4.01, 95% CI (-4.12, -3.90); NSE: WMD = -4.00, 95% CI (-4.14, -3.86); IL-2: WMD = 9.45, 95% CI (8.08, 10.82); IL-4: WMD = -9.61, 95% CI (-11.16, -8.06); IL-5: WMD = -11.95, 95% CI (-13.51, -10.39); IL-6: WMD = -7.65, 95% CI (-8.70, -6.60); IL-2/IL-5: WMD = 0.51, 95% CI (0.47, 0.55); IFN-γ: WMD = 15.19, 95% CI (3.16, 27.23); IFN-γ/IL-4: WMD = 0.91, 95% CI (0.85, 0.97); VEGF: WMD = -59.29, 95% CI (-72.99, -45.58); TGF-α: WMD = -10.09, 95% CI (-12.24, -7.94); TGF-ß: WMD = -135.62, 95% CI (-147.00, -124.24); TGF-ß1: WMD = -4.22, 95% CI (-5.04, -3.41); arginase: WMD = -1.81, 95% CI (-3.57, -0.05); IgG: WMD = 1.62, 95% CI (0.18, 3.06); IgM: WMD = -0.45, 95% CI (-0.59, -0.31). All results are statistically significant. No adverse events were reported in the included articles. Conclusion: It is a reasonable choice to use ginseng and its active components as adjuvant therapy for NSCLC. Ginseng is helpful for NSCLC patients' conditions, immune cells, cytokines, and secretions in the serum.

4.
J Ginseng Res ; 47(1): 9-22, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36644386

RESUMEN

As a famous herbal medicine in China and Asia, ginseng (Panax ginseng C. A. Meyer) is also known as the "King of All Herbs" and has long been used in medicine and healthcare. In addition to the obvious biological activities of ginsenosides, ginseng polysaccharides (GPs) exhibit excellent antitumor, antioxidant stress, and immunomodulatory effects. In particular, GPs can exert an antitumor effect and is a potential immunomodulator. However, due to the complexity and diversity in the structures and components of GPs, their specific physicochemical properties, and underlying mechanisms remain unclear. In this article, we have summarized the factors influencing the antitumor activity of GPs and their mechanism of action, including the stimulation of the immune system, regulation of the gut microbiota, and direct action on tumor cells.

5.
Pharmacol Res ; 188: 106643, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36608780

RESUMEN

Dietary factors are fundamental in tumorigenesis throughout our lifetime. A spicy diet has been ambiguous on the development of cancers, especially in the study of colon cancer metastasis. Here, we utilized a mouse metastasis model to test the potential role of capsaicin in influencing metastasis. Long-term continuous administration of capsaicin diet (300 mg/kg) to mice promotes the formation of liver pre-metastatic niche to facilitate the metastasis of colon cancer cells. Bacteria translocation to liver is clearly observed. Capsaicin increases intestinal barrier permeability and disrupts gut vascular barrier by altering the composition of gut microbiota. Capsaicin not only changes the abundance of mucin-related bacteria like Akkermanisa and Muribaculaceae, but also bacteria involved in bile acids metabolism. Dysregulated bile acids profile is related to the recruitment of natural killer T (NKT) cells in pre-metastatic niche, primary bile acid α-Muricholic acid can enhance the recruitment of NKT cells, while secondary bile acids Glycoursodeoxycholic acid and Taurohyodeoxycholic acid impair the recruitment of NKT cells. These findings reveal long term consumption of capsaicin increases the risk of cancer metastasis through modulating the gut microbiota. Capsaicin (300 mg/kg) disrupts gut barrier and promotes the translocation of bacteria to liver, while altered bile acids metabolism affects the recruitment of NKT cells in liver, forming a pre-metastatic niche and promoting cancer metastasis.


Asunto(s)
Neoplasias del Colon , Microbioma Gastrointestinal , Ratones , Animales , Capsaicina/farmacología , Hígado/metabolismo , Ácidos y Sales Biliares/metabolismo , Neoplasias del Colon/metabolismo , Bacterias
6.
Biomed Pharmacother ; 156: 113897, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36308918

RESUMEN

Breast cancer is the most commonly diagnosed cancer in the world, and metastasis is often the main cause of death in breast cancer patients. Salvia miltiorrhiza -Ginseng (SG) herb pair is clinically used for the treatment of cardiovascular diseases and cancers. However, the pharmacological action of this pair on breast cancer is yet unclear. In this study, a spontaneous metastasis model of breast cancer was constructed to assess the therapeutic value of SG. After administration of different doses of SG, the results showed that although it did not significantly inhibit tumor growth, high-dose SG administration could inhibit tumor metastasis. Then, based on systematic pharmacology combined with Gene Expression Omnibus (GEO) database, potential targets of drugs were identified such as vascular endothelial growth factor A (VEGFA), matrix metalloproteinase (MMP9), prostaglandin endoperoxide synthase2 (PTGS2), etc. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) analysis revealed that these targets were related to cytokine-mediated signaling pathway, cell migration and other biological processes and signaling pathways such as PI3K/Akt, etc. The systematic pharmacology analysis showed that SG effectively inhibited the VEGFA and MMP9-mediated biological events such as angiogenesis, epithelial-mesenchymal transition (EMT) and impaired tumor metastasis. Overall, our research aimed to provide new ideas for the treatment of breast cancer lung metastasis in traditional Chinese medicine.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Medicamentos Herbarios Chinos , Panax , Salvia miltiorrhiza , Humanos , Femenino , Salvia miltiorrhiza/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Factor A de Crecimiento Endotelial Vascular/genética , Panax/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Antineoplásicos/farmacología , Medicina Tradicional China , China
7.
Phytother Res ; 36(11): 4125-4138, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36100366

RESUMEN

Polysaccharide is a kind of macromolecule polymer composed of monosaccharides connected by glycosidic bonds. Traditional Chinese medicine (TCM), composed of various bioactive ingredients, is usually rich in polysaccharides. In recent years, extensive research on TCM polysaccharides has demonstrated their pharmacological effects. Polysaccharides can hardly be catabolized by enzymes encoded by the human genome but can be degraded to absorbable metabolites by bacteria inhabiting the colon. Hence, the gut microbiota plays a vital role in degrading TCM polysaccharides into short-chain fatty acids (SCFAs) which exert physiological functions locally and systemically. Besides, TCM polysaccharides can also modulate the composition and activities of the gut microbiota by promoting the growth of beneficial bacteria and inhibiting the colonization of pathogenic bacteria, ultimately restoring gut homeostasis and improving human health. In this review, we discuss the extraction and pharmacological effects of TCM polysaccharides, various functions of the gut microbiota, and the interactions between TCM polysaccharides and the gut microbiota, illuminating the mechanisms of TCM polysaccharides modulating host physiology via the gut microbiota. To firmly establish the clinical efficacy of TCM polysaccharides, further high-quality studies especially clinical trials are needed. Generally, discussion on the interplay between TCM polysaccharides and the gut microbiota is expected to elucidate their application prospects and inspire new thoughts in the development of TCM.


Asunto(s)
Medicamentos Herbarios Chinos , Microbioma Gastrointestinal , Humanos , Medicina Tradicional China , Polisacáridos/farmacología , Polisacáridos/química , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Bacterias
8.
Front Immunol ; 13: 874878, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35634319

RESUMEN

Background: The gut-liver axis plays a crucial role in various liver diseases. Therefore, targeting this crosstalk may provide a new treatment strategy for liver diseases. However, the exact mechanism underlying this crosstalk and its impact on drug-induced liver injury (DILI) requires clarification. Aim: This study aimed to investigate the potential mechanism and therapeutic effect of MgIG on MTX-induced liver injury, which is associated with the gut-liver axis and gut microbiota. Methods: An MTX-induced liver injury model was generated after 20-mg/kg/3d MTX application for 30 days. Meanwhile, the treatment group was treated with 40-mg/kg MgIG daily. Histological examination, aminotransferase, and aspartate aminotransferase enzyme levels were estimated to evaluate liver function. Immune cells infiltration and inflammatory cytokines were detected to indicate inflammation levels. Colon histological score, intestinal barrier leakage, and expression of tight junctions were employed to assess the intestinal injury. Bacterial translocation was observed using fluorescent in situ hybridisation, colony-forming unit counting, and lipopolysaccharide detection. Alterations in gut microbial composition were analysed using 16s rDNA sequencing and relative quantitative polymerase chain reaction. Short-chain-fatty-acids and lactic acid concentrations were then utilized to validate changes in metabolites of specific bacteria. Lactobacillus sp. supplement and fecal microbiota transplantation were used to evaluate gut microbiota contribution. Results: MTX-induced intestinal and liver injuries were significantly alleviated using MgIG treatment. Bacterial translocation resulting from the intestinal barrier disruption was considered a crucial cause of MTX-induced liver injury and the therapeutic target of MgIG. Moreover, MgIG was speculated to have changed the gut microbial composition by up-regulating probiotic Lactobacillus and down-regulating Muribaculaceae, thereby remodelling the intestinal barrier and inhibiting bacterial translocation. Conclusion: The MTX-induced intestinal barrier was protected owing to MgIG administration, which reshaped the gut microbial composition and inhibited bacterial translocation into the liver, thus attenuating MTX-related DILI.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Microbioma Gastrointestinal , Hepatopatías , Humanos , Hepatopatías/microbiología , Metotrexato/efectos adversos , Saponinas , Triterpenos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA