Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mar Biotechnol (NY) ; 26(3): 511-525, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38748059

RESUMEN

Bicarbonate and sulfate are among two primary ion constituents of saline-alkaline water, with excessive levels potentially causing metabolic disorders in crustaceans, affecting their molting and interrupting development. As an economically important crustacean species, the molecular adaptive mechanism of giant freshwater prawn Macrobrachium rosenbergii in response to the stress of bicarbonate and sulfate remains unexplored. To investigate the mechanism underlying NaHCO3, Na2SO4, and mixed NaHCO3, Na2SO4 stresses, M. rosenbergii larvae were exposed to the above three stress conditions, followed by total RNA extraction and high-throughput sequencing at eight distinct time points (0, 4, 8, 12, 24, 48, 72, and 96 h). Subsequent analysis revealed 13, 16, and 13 consistently identified differentially expressed genes (DEGs) across eight time points under three stress conditions. These consistently identified DEGs were significantly involved in the Gene Ontology (GO) terms of chitin-based cuticle development, protein-carbohydrate complex, structural constituent of cuticle, carnitine biosynthetic process, extracellular matrix, and polysaccharide catabolic process, indicating that alkaline stresses might potentially impact the energy metabolism, growth, and molting of M. rosenbergii larvae. Particularly, the transcriptome data revealed that DEGs associated with energy metabolism, immunity, and amino acid metabolism were enriched across multiple time points under three stress conditions. These DEGs are linked to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, including glycolysis/glucogenesis, amino sugar and nucleotide sugar metabolism, and lysine degradation. Consistent enrichment findings across the three stress conditions support conclusions above. Together, these insights are instrumental in enhancing our understanding of the molecular mechanisms underlying the alkaline response in M. rosenbergii larvae. Additionally, they offer valuable perspectives on the regulatory mechanisms of freshwater crustaceans amid saline-alkaline water development.


Asunto(s)
Perfilación de la Expresión Génica , Larva , Palaemonidae , Transcriptoma , Animales , Palaemonidae/genética , Palaemonidae/metabolismo , Palaemonidae/efectos de los fármacos , Larva/genética , Larva/metabolismo , Larva/efectos de los fármacos , Estrés Fisiológico/genética , Sulfatos/metabolismo , Muda/genética , Muda/efectos de los fármacos , Bicarbonatos/metabolismo , Agua Dulce
2.
Chemosphere ; 153: 322-31, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27023120

RESUMEN

The release of silver nanoparticles (Ag NPs) in aquatic environment has caused wide public concern about their effects on living organisms (e.g., algae). However, how these small NPs exert cytotoxicity in the living organisms has always been under heated debate. In this study, the uptake and toxicity effects of strongly red-emitting fluorescent silver nanoclusters (r-Ag NCs) exposed to the green algae Scenedesmus obliquus was investigated. Upon exposure to pure r-Ag NCs and r-Ag NCs containing l-cysteine, the algae growth inhibition test showed that Ag(+) ions released from r-Ag NCs played an important role in the toxicity of r-Ag NCs along with the toxicity of intact r-Ag NCs. Furthermore, no signals of intracellular reactive oxygen species (ROS) were observed indicating that r-Ag NCs or released Ag(+) ions - mediated growth inhibition of algae cells was independent of ROS production. Transmission electron microscopy (TEM) and laser scanning confocal microscopy (LSCM) were employed to study cellular uptake and cytotoxicity. Furthermore, analysis of differential expressed gene demonstrated that r-Ag NCs as well as the released Ag(+) ions can simultaneously exist inside the algae cells, and inhibit the transcriptomic process of genes by their "joint-toxicity" mechanism. Taken together, our study provides a new insight into the molecular mechanisms of r-Ag NCs and Ag(+) ions exposure to the aquatic organism and can be applied to early diagnosis of ecologic risk mediated by others metal-based NPs.


Asunto(s)
Colorantes Fluorescentes/metabolismo , Nanopartículas del Metal/toxicidad , Scenedesmus/efectos de los fármacos , Plata/metabolismo , Plata/toxicidad , Transporte Biológico , Cisteína/farmacología , Microscopía Confocal , Microscopía Electrónica de Transmisión , Especies Reactivas de Oxígeno/metabolismo , Scenedesmus/genética , Scenedesmus/metabolismo
3.
Chemosphere ; 145: 157-62, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26688252

RESUMEN

Understanding the nanomaterial potential to the food conversion of two food chain levels is important in the ecosystem assessment as manufactured nanomaterials are being released into the environment. In this investigation, the food conversion from Daphnia magna (D. magna) (prey) to Danio rerio (D. rerio) (predator) was used as the study object of aqueous stable fullerene nanocrystals (nC60). Accumulated nC60 of D. magna was determined as the nominal initial exposure concentration for D. rerio. The results of 21-d dietary exposure experiment demonstrate that nC60 in D. magna decreased the body weight growths and condition factors of D. rerio, and reduced the food conversion ratio by 20% (from D. magna to D. rerio). Further, the experiments present that nC60 decrease three digestive enzymes activities of trypsinase, lipase, and amylase by 30, 29, and 55% in vivo, and by 60, 90, and 42% in vitro, respectively. Both in vivo and in vitro experiments indicated that nC60 was involved with the decrements of digestive enzymes activities. These decrements in digestive enzymes activities may be due to the deactivation caused by the adsorption of nC60 particles onto the surface or active center of digestive enzymes. Sum up, these results not only describe the nC60 deleterious effects on the food conversion from D. magna to D. rerio, but also provide some information regarding a probable food conversion inhibition mechanism of nC60.


Asunto(s)
Daphnia/metabolismo , Fulerenos/toxicidad , Nanopartículas/toxicidad , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/metabolismo , Amilasas/metabolismo , Animales , Peso Corporal/efectos de los fármacos , Dieta , Cadena Alimentaria , Agua Dulce , Lipasa/metabolismo , Pez Cebra/crecimiento & desarrollo
4.
Chemosphere ; 122: 162-167, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25479812

RESUMEN

Understanding sub-lethal effects of nanomaterial may be particularly important to determining ecosystem responses as current levels of nanomaterial release are low compared to levels projected for the future. In this work, the sub-lethal effects of water stable, nanocrystalline fullerenes as C60 (termed nC60) were studied on Scenedesmusobliquus, a globally distributed phytoplankton. Sub-lethal concentration for S. obliquus was firstly determined as 0.09mgL(-1) using the standard 72h exposure tests (OECD Guideline 201). Subsequent sub-lethal experiment of nC60 on the S. obliquus was carried out for 60d and focused on the photosynthesis processes. The results demonstrate that upon sub-lethal exposure, the photosynthetic products of polysaccharide, soluble protein and total lipid were decreased with exposure time. The photosynthetic pigments of chlorophyll a and chlorophyll b were negatively impacted. Further investigations indicate that the decrements in photosynthetic products and pigments were mainly due to the algal Mg(2+) decrement (by 40%) at the sub-lethal concentration (0.09mgL(-1)) of nC60. The decrement in Mg(2+) of S. obliquus was due to the inhibition of Mg(2+)-ATPase activity caused by nC60. Sum up, these results not only describe the sub-lethal effects but also provide the probably mechanism for sub-lethal effects of nC60 on exposed S. obliquus.


Asunto(s)
Fulerenos/toxicidad , Nanopartículas/toxicidad , Scenedesmus/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , ATPasa de Ca(2+) y Mg(2+)/antagonistas & inhibidores , Clorofila/metabolismo , Clorofila A , Fotosíntesis/efectos de los fármacos , Proteínas de Plantas/metabolismo , Scenedesmus/crecimiento & desarrollo , Scenedesmus/metabolismo
5.
Chemosphere ; 92(9): 1245-52, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23755985

RESUMEN

Our focus herein is to evaluate the potential interaction between nC60 and copper, a trace necessary metal, in light of the impact on toxicity. The non-observable effects concentration (NOEC) of nC60 was confirmed as 100µgL(-1) before. When Daphnia magna was exposed to the mixture of copper solution and nC60 suspension (100µgL(-1)), LC50 of 48h was lower than that when they were exposed to copper solution alone. This result clearly showed the decrease in NOEC of copper at the presence of nC60. Cu(2+)-ATPase activity was enhanced at the presence of nC60, indicating that copper transport involved with the uptake, distribution and depuration in body was increased. We further conducted experiments on accumulation of copper in D. magna. The observed equilibrium copper concentration in D. magna in the mixture of 100µgL(-1) nC60 and 1µgL(-1) copper solution reached 131µg (kg wet weight)(-1), which was more than twice that in copper solution only: 60µg (kg wet weight)(-1). This result demonstrated that the accumulation of copper in D. magna was significantly enhanced at the presence of even low nC60 concentration. Experiments also showed that copper was quickly adsorbed onto nC60. The absorption of copper onto D. magna was statistically correlated to the absorption of nC60 onto D. magna; this might be caused by nC60 facilitating the transfer of copper into D. magna. The absorption and desorption of copper to nC60 (pH=5.0) reached equilibrium quickly, which may be involved with the co-bioaccumulation and decrease in NOEC of Cu(2+) and nC60.


Asunto(s)
Cobre/toxicidad , Daphnia/efectos de los fármacos , Fulerenos/toxicidad , Nanopartículas/toxicidad , Contaminantes Químicos del Agua/toxicidad , Absorción , Adenosina Trifosfatasas/metabolismo , Animales , Cobre/química , Daphnia/enzimología , Fulerenos/química , Dosificación Letal Mediana , Nanopartículas/química , Contaminantes Químicos del Agua/química
6.
J Environ Sci (China) ; 23(2): 322-9, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21517008

RESUMEN

We investigated the effects of environmental factors and properties of water-stable crystal fullerene (nC60) on the uptake of nC60 by Daphnia magna based on known accumulation in our laboratory. This study was performed for seven days using different environmental factors including temperature, pH, water hardness, concentration (density of particle), and particle size. Results demonstrated that body burden of C60 increased with time in all experiments. Body burden of C60 increased with increasing concentration and particle size, and uptake of particles >100 nm reached their maximums more quickly than those <100 nm. Under high hardness in aqueous systems with lower pH and high temperature, uptake was higher than those under opposite conditions. Uptake in all batch tests reached balance within five days. Both nC60 properties and environmental factors influenced uptake of nC60 by D. magna in an aqueous system. Additionally, environmental factors may have affected accumulation by changing nC60 properties, which are critical to understand the accumulation of fullerenes in aqueous systems.


Asunto(s)
Daphnia/efectos de los fármacos , Fulerenos/farmacología , Nanopartículas , Animales , Daphnia/fisiología , Fulerenos/química
7.
Chemosphere ; 77(11): 1482-7, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19897225

RESUMEN

Concerns exist regarding the inadvertent release of engineered nanomaterials into natural systems, and the possible negative ecosystem response that may occur. Understanding sub-lethal effects may be particularly important to determining ecosystem responses as current levels of nanomaterial release are low compared to levels projected for the future. In this work, the sub-lethal effects and bioaccumulation of water stable, nanocrystalline fullerenes as C60, (termed nC60) were studied in Daphnia magna, a globally distributed, parthenogenetic zooplankton. Sub-lethal concentrations were first determined for both mature mother (LD50=0.4 mg L(-1)) and neonate (gestating) daphnids (0.2 mg L(-1)) in standard 48 h exposure tests. Subsequent experiments focused on the accumulation and effects (at temperatures of 18-28 degrees C) of nC60, during the D. magna reproductive cycle. The results demonstrate that upon sub-lethal exposure, the mortality rates of gestating daphnids increased with time and developmental stage. The maturation of daughter daphnids was negatively impacted. The mother daphnids were unable to reproduce again after exposure during pregnancy, and differential bioaccumulation occurred as a function of lipid content in the daphnia with the highest accumulation level of 7000 mg kg(-1) wet weight. Taken together, these results not only describe the accumulation and sub-lethal effects of nC60 on exposed daphnia, but also highlight the importance of sub-lethal exposure scenarios, which are critical to fully understanding the potential impact of fullerenes and other engineered nanoscale materials on natural systems.


Asunto(s)
Daphnia/efectos de los fármacos , Fulerenos/toxicidad , Nanopartículas/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Femenino , Dosificación Letal Mediana , Reproducción/efectos de los fármacos , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA