Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Death Dis ; 15(5): 333, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740758

RESUMEN

Precise polyamine metabolism regulation is vital for cells and organisms. Mutations in spermine synthase (SMS) cause Snyder-Robinson intellectual disability syndrome (SRS), characterized by significant spermidine accumulation and autophagy blockage in the nervous system. Emerging evidence connects polyamine metabolism with other autophagy-related diseases, such as Tauopathy, however, the functional intersection between polyamine metabolism and autophagy in the context of these diseases remains unclear. Here, we altered SMS expression level to investigate the regulation of autophagy by modulated polyamine metabolism in Tauopathy in Drosophila and human cellular models. Interestingly, while complete loss of Drosophila spermine synthase (dSms) impairs lysosomal function and blocks autophagic flux recapitulating SRS disease phenotype, partial loss of dSms enhanced autophagic flux, reduced Tau protein accumulation, and led to extended lifespan and improved climbing performance in Tauopathy flies. Measurement of polyamine levels detected a mild elevation of spermidine in flies with partial loss of dSms. Similarly, in human neuronal or glial cells, partial loss of SMS by siRNA-mediated knockdown upregulated autophagic flux and reduced Tau protein accumulation. Importantly, proteomics analysis of postmortem brain tissue from Alzheimer's disease (AD) patients showed a significant albeit modest elevation of SMS level. Taken together, our study uncovers a functional correlation between polyamine metabolism and autophagy in AD: SMS reduction upregulates autophagy, suppresses Tau accumulation, and ameliorates neurodegeneration and cell death. These findings provide a new potential therapeutic target for AD.


Asunto(s)
Autofagia , Espermina Sintasa , Proteínas tau , Animales , Proteínas tau/metabolismo , Humanos , Espermina Sintasa/metabolismo , Espermina Sintasa/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Tauopatías/metabolismo , Tauopatías/patología , Neuronas/metabolismo , Neuronas/patología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Espermidina/metabolismo , Modelos Animales de Enfermedad , Lisosomas/metabolismo , Drosophila/metabolismo , Discapacidad Intelectual Ligada al Cromosoma X
2.
EMBO Mol Med ; 15(11): e17833, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37702369

RESUMEN

Snyder-Robinson syndrome (SRS) results from mutations in spermine synthase (SMS), which converts the polyamine spermidine into spermine. Affecting primarily males, common manifestations of SRS include intellectual disability, osteoporosis, hypotonia, and seizures. Symptom management is the only treatment. Reduced SMS activity causes spermidine accumulation while spermine levels are reduced. The resulting exaggerated spermidine:spermine ratio is a biochemical hallmark of SRS that tends to correlate with symptom severity. Our studies aim to pharmacologically manipulate polyamine metabolism to correct this imbalance as a therapeutic strategy for SRS. Here we report the repurposing of 2-difluoromethylornithine (DFMO), an FDA-approved inhibitor of polyamine biosynthesis, in rebalancing spermidine:spermine ratios in SRS patient cells. Mechanistic in vitro studies demonstrate that, while reducing spermidine biosynthesis, DFMO also stimulates the conversion of spermidine into spermine in hypomorphic SMS cells and induces uptake of exogenous spermine, altogether reducing the aberrant ratios. In a Drosophila SRS model characterized by reduced lifespan, DFMO improves longevity. As nearly all SRS patient mutations are hypomorphic, these studies form a strong foundation for translational studies with significant therapeutic potential.


Asunto(s)
Poliaminas , Espermidina , Masculino , Humanos , Poliaminas/metabolismo , Espermidina/metabolismo , Espermidina/farmacología , Espermina/metabolismo , Eflornitina/farmacología , Eflornitina/uso terapéutico , Espermina Sintasa/genética , Espermina Sintasa/metabolismo
3.
bioRxiv ; 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37034775

RESUMEN

Snyder-Robinson Syndrome (SRS) is caused by mutations in the spermine synthase (SMS) gene, the enzyme product of which converts the polyamine spermidine into spermine. Affecting primarily males, common manifestations of SRS include intellectual disability, osteoporosis, hypotonic musculature, and seizures, along with other more variable symptoms. Currently, medical management focuses on treating these symptoms without addressing the underlying molecular cause of the disease. Reduced SMS catalytic activity in cells of SRS patients causes the accumulation of spermidine, while spermine levels are reduced. The resulting exaggeration in spermidine-to-spermine ratio is a biochemical hallmark of SRS that tends to correlate with symptom severity in the patient. Our studies aim to pharmacologically manipulate polyamine metabolism to correct this polyamine imbalance and investigate the potential of this approach as a therapeutic strategy for affected individuals. Here we report the use of difluoromethylornithine (DFMO; eflornithine), an FDA-approved inhibitor of polyamine biosynthesis, in re-establishing normal spermidine-to-spermine ratios in SRS patient cells. Through mechanistic studies, we demonstrate that, while reducing spermidine biosynthesis, DFMO also stimulates the conversion of existing spermidine into spermine in cell lines with hypomorphic variants of SMS. Further, DFMO treatment induces a compensatory uptake of exogenous polyamines, including spermine and spermine mimetics, cooperatively reducing spermidine and increasing spermine levels. In a Drosophila SRS model characterized by reduced lifespan, adding DFMO to the feed extended lifespan. As nearly all known SRS patient mutations are hypomorphic, these studies form a foundation for future translational studies with significant therapeutic potential.

4.
JCI Insight ; 8(10)2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37014713

RESUMEN

Sorbitol dehydrogenase (SORD) deficiency has been identified as the most frequent autosomal recessive form of hereditary neuropathy. Loss of SORD causes high sorbitol levels in tissues due to the inability to convert sorbitol to fructose in the 2-step polyol pathway, leading to degenerative neuropathy. The underlying mechanisms of sorbitol-induced degeneration have not been fully elucidated, and no current FDA-approved therapeutic options are available to reduce sorbitol levels in the nervous system. Here, in a Drosophila model of SORD deficiency, we showed synaptic degeneration in the brain, neurotransmission defect, locomotor impairment, and structural abnormalities in the neuromuscular junctions. In addition, we found reduced ATP production in the brain and ROS accumulation in the CNS and muscle, indicating mitochondrial dysfunction. Applied Therapeutics has developed a CNS-penetrant next-generation aldose reductase inhibitor (ARI), AT-007 (govorestat), which inhibits the conversion of glucose to sorbitol. AT-007 significantly reduced sorbitol levels in patient-derived fibroblasts, induced pluripotent stem cell-derived (iPSC-derived) motor neurons, and Drosophila brains. AT-007 feeding in Sord-deficient Drosophila mitigated synaptic degeneration and significantly improved synaptic transduction, locomotor activity, and mitochondrial function. Moreover, AT-007 treatment significantly reduced ROS accumulation in Drosophila CNS, muscle, and patient-derived fibroblasts. These findings uncover the molecular and cellular pathophysiology of SORD neuropathy and provide a potential treatment strategy for patients with SORD deficiency.


Asunto(s)
L-Iditol 2-Deshidrogenasa , Enfermedades del Sistema Nervioso Periférico , Humanos , L-Iditol 2-Deshidrogenasa/genética , Sorbitol/metabolismo , Especies Reactivas de Oxígeno , Glucosa/metabolismo
5.
bioRxiv ; 2023 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-36993333

RESUMEN

Tauopathy, including Alzheimer Disease (AD), is characterized by Tau protein accumulation and autophagy dysregulation. Emerging evidence connects polyamine metabolism with the autophagy pathway, however the role of polyamines in Tauopathy remains unclear. In the present study we investigated the role of spermine synthase (SMS) in autophagy regulation and tau protein processing in Drosophila and human cellular models of Tauopathy. Our previous study showed that Drosophila spermine synthase (dSms) deficiency impairs lysosomal function and blocks autophagy flux. Interestingly, partial loss-of-function of SMS in heterozygous dSms flies extends lifespan and improves the climbing performance of flies with human Tau (hTau) overexpression. Mechanistic analysis showed that heterozygous loss-of-function mutation of dSms reduces hTau protein accumulation through enhancing autophagic flux. Measurement of polyamine levels detected a mild elevation of spermidine in flies with heterozygous loss of dSms. SMS knock-down in human neuronal or glial cells also upregulates autophagic flux and reduces Tau protein accumulation. Proteomics analysis of postmortem brain tissue from AD patients showed a significant albeit modest elevation of SMS protein level in AD-relevant brain regions compared to that of control brains consistently across several datasets. Taken together, our study uncovers a correlation between SMS protein level and AD pathogenesis and reveals that SMS reduction upregulates autophagy, promotes Tau clearance, and reduces Tau protein accumulation. These findings provide a new potential therapeutic target of Tauopathy.

6.
JCI Insight ; 7(13)2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35801587

RESUMEN

Polyamine dysregulation plays key roles in a broad range of human diseases from cancer to neurodegeneration. Snyder-Robinson syndrome (SRS) is the first known genetic disorder of the polyamine pathway, caused by X-linked recessive loss-of-function mutations in spermine synthase. In the Drosophila SRS model, altered spermidine/spermine balance has been associated with increased generation of ROS and aldehydes, consistent with elevated spermidine catabolism. These toxic byproducts cause mitochondrial and lysosomal dysfunction, which are also observed in cells from SRS patients. No efficient therapy is available. We explored the biochemical mechanism and discovered acetyl-CoA reduction and altered protein acetylation as potentially novel pathomechanisms of SRS. We repurposed the FDA-approved drug phenylbutyrate (PBA) to treat SRS using an in vivo Drosophila model and patient fibroblast cell models. PBA treatment significantly restored the function of mitochondria and autolysosomes and extended life span in vivo in the Drosophila SRS model. Treating fibroblasts of patients with SRS with PBA ameliorated autolysosome dysfunction. We further explored the mechanism of drug action and found that PBA downregulates the first and rate-limiting spermidine catabolic enzyme spermidine/spermine N1-acetyltransferase 1 (SAT1), reduces the production of toxic metabolites, and inhibits the reduction of the substrate acetyl-CoA. Taken together, we revealed PBA as a potential modulator of SAT1 and acetyl-CoA levels and propose PBA as a therapy for SRS and potentially other polyamine dysregulation-related diseases.


Asunto(s)
Poliaminas , Espermidina , Acetilcoenzima A/metabolismo , Acetilesterasa , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Animales , Drosophila/metabolismo , Discapacidad Intelectual Ligada al Cromosoma X , Fenilbutiratos/farmacología , Poliaminas/metabolismo , Espermidina/metabolismo , Espermina/metabolismo
7.
Elife ; 102021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34919052

RESUMEN

Gliomas are highly malignant brain tumors with poor prognosis and short survival. NAD+ has been shown to impact multiple processes that are dysregulated in cancer; however, anti-cancer therapies targeting NAD+ synthesis have had limited success due to insufficient mechanistic understanding. Here, we adapted a Drosophila glial neoplasia model and discovered the genetic requirement for NAD+ synthase nicotinamide mononucleotide adenylyltransferase (NMNAT) in glioma progression in vivo and in human glioma cells. Overexpressing enzymatically active NMNAT significantly promotes glial neoplasia growth and reduces animal viability. Mechanistic analysis suggests that NMNAT interferes with DNA damage-p53-caspase-3 apoptosis signaling pathway by enhancing NAD+-dependent posttranslational modifications (PTMs) poly(ADP-ribosyl)ation (PARylation) and deacetylation of p53. Since PARylation and deacetylation reduce p53 pro-apoptotic activity, modulating p53 PTMs could be a key mechanism by which NMNAT promotes glioma growth. Our findings reveal a novel tumorigenic mechanism involving protein complex formation of p53 with NAD+ synthetic enzyme NMNAT and NAD+-dependent PTM enzymes that regulates glioma growth.


One of the most common types of brain cancer, glioma, emerges when harmful mutations take place in the 'glial' cells tasked with supporting neurons. When these genetically damaged cells are not fixed or eliminated, they can go on to multiply uncontrollability. A protein known as p53 can help to repress emerging tumors by stopping mutated cells in their tracks. Glioma is a highly deadly cancer, and treatments are often ineffective. Some of these approaches have focused on a protein involved in the creation of the coenzyme NAD+, which is essential to the life processes of all cells. However, these drugs have had poor outcomes. Instead, Liu et al. focused on NMNAT, the enzyme that participates in the final stage of the creation of NAD+. NMNAT is known to protect neurons, but it is unclear how it involved in cancer. Experiments in fruit flies which were then validated in human glioma cells showed that increased NMNAT activity allowed glial cells with harmful mutations to survive and multiply. Detailed molecular analysis showed that NMNAT orchestrates chemical modifications that inactivate p53. It does so by working with other molecular actors to direct NAD+ to add and remove chemical groups that control the activity of p53. Taken together, these results show how NMNAT can participate in the emergence of brain cancers. They also highlight the need for further research on whether drugs that inhibit this enzyme could help to suppress tumors before they become deadly.


Asunto(s)
Proliferación Celular , Proteínas de Drosophila/genética , Glioma/metabolismo , Nicotinamida-Nucleótido Adenililtransferasa/genética , Procesamiento Proteico-Postraduccional , Proteína p53 Supresora de Tumor/metabolismo , Animales , Apoptosis , Modelos Animales de Enfermedad , Proteínas de Drosophila/metabolismo , Glioma/genética , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo
8.
J Med Chem ; 64(21): 15593-15607, 2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34695351

RESUMEN

Snyder Robinson Syndrome (SRS) is a rare disease associated with a defective spermine synthase gene and low intracellular spermine levels. In this study, a spermine replacement therapy was developed using a spermine prodrug that enters cells via the polyamine transport system. The prodrug was comprised of three components: a redox-sensitive quinone "trigger", a "trimethyl lock (TML)" aryl "release mechanism", and spermine. The presence of spermine in the design facilitated uptake by the polyamine transport system. The quinone-TML motifs provided a redox-sensitive agent, which upon intracellular reduction generated a hydroquinone, which underwent intramolecular cyclization to release free spermine and a lactone byproduct. Rewardingly, most SRS fibroblasts treated with the prodrug revealed a significant increase in intracellular spermine. Administering the spermine prodrug through feeding in a Drosophila model of SRS showed significant beneficial effects. In summary, a spermine prodrug is developed and provides a lead compound for future spermine replacement therapy experiments.


Asunto(s)
Desarrollo de Medicamentos , Discapacidad Intelectual Ligada al Cromosoma X/tratamiento farmacológico , Profármacos/uso terapéutico , Espermina/uso terapéutico , Animales , Relación Dosis-Respuesta a Droga , Drosophila , Femenino , Masculino , Estructura Molecular , Oxidación-Reducción , Profármacos/química , Profármacos/metabolismo , Espermina/química , Espermina/metabolismo , Relación Estructura-Actividad
9.
iScience ; 19: 1048-1064, 2019 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-31522116

RESUMEN

Understanding endogenous regulation of stress resistance and homeostasis maintenance is critical to developing neuroprotective therapies. Nicotinamide mononucleotide adenylyltransferase (NMNAT) is a conserved essential enzyme that confers extraordinary protection and stress resistance in many neurodegenerative disease models. Drosophila Nmnat is alternatively spliced to two mRNA variants, RA and RB. RB translates to protein isoform PD with robust protective activity and is upregulated upon stress to confer enhanced neuroprotection. The mechanisms regulating the alternative splicing and stress response of NMNAT remain unclear. We have discovered a Drosophila microRNA, dme-miR-1002, which promotes the splicing of NMNAT pre-mRNA to RB by disrupting a pre-mRNA stem-loop structure. NMNAT pre-mRNA is preferentially spliced to RA in basal conditions, whereas miR-1002 enhances NMNAT PD-mediated stress protection by binding via RISC component Argonaute1 to the pre-mRNA, facilitating the splicing switch to RB. These results outline a new process for microRNAs in regulating alternative splicing and modulating stress resistance.

10.
Proc Natl Acad Sci U S A ; 116(38): 19165-19175, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31484760

RESUMEN

Accumulative aggregation of mutant Huntingtin (Htt) is a primary neuropathological hallmark of Huntington's disease (HD). Currently, mechanistic understanding of the cytotoxicity of mutant Htt aggregates remains limited, and neuroprotective strategies combating mutant Htt-induced neurodegeneration are lacking. Here, we show that in Drosophila models of HD, neuronal compartment-specific accumulation of mutant Htt aggregates causes neurodegenerative phenotypes. In addition to the increase in the number and size, we discovered an age-dependent acquisition of thioflavin S+, amyloid-like adhesive properties of mutant Htt aggregates and a concomitant progressive clustering of aggregates with mitochondria and synaptic proteins, indicating that the amyloid-like adhesive property underlies the neurotoxicity of mutant Htt aggregation. Importantly, nicotinamide mononucleotide adenylyltransferase (NMNAT), an evolutionarily conserved nicotinamide adenine dinucleotide (NAD+) synthase and neuroprotective factor, significantly mitigates mutant Htt-induced neurodegeneration by reducing mutant Htt aggregation through promoting autophagic clearance. Additionally, Nmnat overexpression reduces progressive accumulation of amyloid-like Htt aggregates, neutralizes adhesiveness, and inhibits the clustering of mutant Htt with mitochondria and synaptic proteins, thereby restoring neuronal function. Conversely, partial loss of endogenous Nmnat exacerbates mutant Htt-induced neurodegeneration through enhancing mutant Htt aggregation and adhesive property. Finally, conditional expression of Nmnat after the onset of degenerative phenotypes significantly delays the progression of neurodegeneration, revealing the therapeutic potential of Nmnat-mediated neuroprotection at advanced stages of HD. Our study uncovers essential mechanistic insights to the neurotoxicity of mutant Htt aggregation and describes the molecular basis of Nmnat-mediated neuroprotection in HD.


Asunto(s)
Amiloide/toxicidad , Proteínas de Drosophila/metabolismo , Proteína Huntingtina/metabolismo , Proteínas Mutantes/metabolismo , Mutación , Enfermedades Neurodegenerativas/prevención & control , Fármacos Neuroprotectores , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Proteína Huntingtina/genética , Proteínas Mutantes/genética , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Nicotinamida-Nucleótido Adenililtransferasa/genética , Agregado de Proteínas
11.
Cell Rep ; 24(7): 1713-1721.e4, 2018 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-30110628

RESUMEN

Amyloid bodies (A-bodies) are inducible membrane-less nuclear compartments composed of heterogeneous proteins that adopt an amyloid-like state. A-bodies are seeded by noncoding RNA derived from stimuli-specific loci of the rDNA intergenic spacer (rIGSRNA). This raises the question of how rIGSRNA recruits a large population of diverse proteins to confer A-body identity. Here, we show that long low-complexity dinucleotide repeats operate as the architectural determinants of rIGSRNA. On stimulus, clusters of rIGSRNA with simple cytosine/uracil (CU) or adenosine/guanine (AG) repeats spanning hundreds of nucleotides accumulate in the nucleolar area. The low-complexity sequences facilitate charge-based interactions with short cationic peptides to produce multiple nucleolar liquid-like foci. Local concentration of proteins with fibrillation propensity in these nucleolar foci induces the formation of an amyloidogenic liquid phase that seeds A-bodies. These results demonstrate the physiological importance of low-complexity RNA and repetitive regions of the genome often dismissed as "junk" DNA.


Asunto(s)
Proteínas Amiloidogénicas/química , Nucléolo Celular/genética , ADN Intergénico/química , ADN Ribosómico/química , ARN Ribosómico/química , ARN no Traducido/química , Amiloide/química , Amiloide/genética , Amiloide/metabolismo , Proteínas Amiloidogénicas/genética , Proteínas Amiloidogénicas/metabolismo , Animales , Secuencia de Bases , Hipoxia de la Célula , Nucléolo Celular/metabolismo , Nucléolo Celular/ultraestructura , ADN Intergénico/genética , ADN Intergénico/metabolismo , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Repeticiones de Dinucleótido , Expresión Génica , Respuesta al Choque Térmico , Humanos , Concentración de Iones de Hidrógeno , Células MCF-7 , Ratones , Transición de Fase , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , ARN no Traducido/genética , ARN no Traducido/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Electricidad Estática , Estrés Fisiológico , Imagen de Lapso de Tiempo
12.
Mol Cell Biol ; 35(22): 3921-32, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26370510

RESUMEN

Tristetraprolin (TTP) regulates the expression of AU-rich element-containing mRNAs through promoting the degradation and repressing the translation of target mRNA. While the mechanism for promoting target mRNA degradation has been extensively studied, the mechanism underlying translational repression is not well established. Here, we show that TTP recruits eukaryotic initiation factor 4E2 (eIF4E2) to repress target mRNA translation. TTP interacted with eIF4E2 but not with eIF4E. Overexpression of eIF4E2 enhanced TTP-mediated translational repression, and downregulation of endogenous eIF4E2 or overexpression of a truncation mutant of eIF4E2 impaired TTP-mediated translational repression. Overexpression of an eIF4E2 mutant that lost the cap-binding activity also impaired TTP's activity, suggesting that the cap-binding activity of eIF4E2 is important in TTP-mediated translational repression. We further show that TTP promoted eIF4E2 binding to target mRNA. These results imply that TTP recruits eIF4E2 to compete with eIF4E to repress the translation of target mRNA. This notion is supported by the finding that downregulation of endogenous eIF4E2 increased the production of tumor necrosis factor alpha (TNF-α) protein without affecting the mRNA levels in THP-1 cells. Collectively, these results uncover a novel mechanism by which TTP represses target mRNA translation.


Asunto(s)
Elementos Ricos en Adenilato y Uridilato , Biosíntesis de Proteínas , Proteínas de Unión a Caperuzas de ARN/metabolismo , ARN Mensajero/genética , Tristetraprolina/metabolismo , Regulación hacia Abajo , Factor 4E Eucariótico de Iniciación , Células HEK293 , Células HeLa , Humanos , Mapas de Interacción de Proteínas , Proteínas de Unión a Caperuzas de ARN/genética , ARN Mensajero/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...