Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Analyst ; 131(10): 1129-36, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17003861

RESUMEN

The objective of this research is to develop arrays of tuned chemical sensors wherein each sensor element responds to a particular target analyte in a unique manner. By creating sol-gel-derived xerogels that are co-doped with two luminophores at a range of molar ratios, we can form suites of sensor elements that can exhibit a continuum of response profiles. We trained an artificial neural network (ANN) to "learn" to identify the optical outputs from these xerogel-based sensor arrays. By using the ANN in concert with our tailored sensor arrays we obtained a 5-10 fold improvement in accuracy and precision for quantifying O2 in unknown samples. We also explored the response characteristics of these types of sensor elements after they had been contacted with rat plasma/blood. Contact with plasma/blood caused approximately 15% of the luminophore molecules within the xerogels to become non-responsive to O2. This behavior is consistent with rat albumin blocking certain pore sub-populations within the mesoporous xerogel matrix thereby limiting O2 access to the luminophores.

2.
Anal Chem ; 78(6): 1939-45, 2006 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-16536431

RESUMEN

We report on the analytical figures of merit for O2-responsive sensor arrays and films formed by sequestering tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(II) within class II organically modified silicates that are composed of tetramethoxysilane or tetraethoxysilane and monoalkylsiloxanes of the form (CnH(2n+1))-Si-(OR)3 (n = 1-12, R = Me or Et). These sensors exhibit a reasonably linear response to gaseous and dissolved O2 (r2 > 0.99), and the sensor responses are stable for over 2 years. Sensor sensitivity can be tuned continuously by adjusting n. For gas-phase O2 detection, changes in the sensor sensitivity depend primarily on the O2 diffusion coefficient within the xerogel phase. The O2 solubility coefficient within the xerogel phase is also a factor but to a lesser degree. For dissolved O2 detection, changes in the sensor sensitivity depend on the O2 diffusion coefficient and the O2 solubility coefficient within the xerogel phase. A linear correlation also exists between the sensor sensitivity and the polarity within these xerogels. Finally, the feature size of pin-printed sensor elements was found to depend linearly on pin velocity. The results of these experiments demonstrate a new strategy for creating xerogel-based sensor arrays consisting of diversified sensor elements for the same target analyte.

3.
Anal Chim Acta ; 564(1): 59-65, 2006 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-17723362

RESUMEN

We report on a new sensor strategy that we have termed protein imprinted xerogels with integrated emission sites (PIXIES). The PIXIES platform is completely self-contained, and it achieves analyte recognition without a biorecognition element (e.g., antibody). The PIXIES relies upon sol-gel-derived xerogels, molecular imprinting, and the selective installation of a luminescent reporter molecule directly within the molecularly imprint site. In operation the templated xerogel selectively recognizes the target analyte, the analyte binds to the template site, and binding causes a change in the physicochemical properties within the template site that are sensed and reported by the luminescent probe molecule. We report the PIXIES analytical figures of merit for and compare these results to a standard ELISA. For human interleukin-1 the PIXIES-based sensor elements exhibited the following analytical figures of merit: (i) approximately 2 pg/mL detection limits; (ii) <2 min response times; (iii) >85 selectivity; (iv) <6% R.S.D. long term drift over 16 weeks of ambient storage; (v) >95% reversibility after more than 25 cycles; and (vi) >85% recoveries on spiked samples.

4.
Anal Chem ; 75(10): 2407-13, 2003 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-12918984

RESUMEN

Novel O2-sensing materials based on spin-coated n-octyltriethoxysilane (Octyl-triEOS)/tetraethylorthosilane (TEOS) composite xerogel films have been synthesized and investigated. These sensors are based on the O2 quenching of tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(II) ([Ru(dpp)3]2+) sequestered within the xerogels. Scanning electron microscopy and luminescence measurements (steady state and time resolved) have been used to investigate the structure of these films and their analytical figures of merit and determine the underlying reasons for their observed performance. The results show that certain [Ru(dpp)3]2+-doped Octyl-triEOS/TEOS composites form uniform, crack-free xerogel films that can be used to construct high-sensitivity O2 sensors that have linear calibration curves and excellent long-term stability. For example, an 11-month-old sensor based on 50 mol % Octyl-triEOS exhibits more than 4-fold greater sensitivity in comparison to an equivalent sensor based on pure TEOS. Over an 11-month time period, the sensitivity of a pure TEOS-based sensor drops by more than 400% whereas a sensor based on 50 mol % Octyl-triEOS remains stable (RSD = 4%).


Asunto(s)
Técnicas Biosensibles/métodos , Geles/química , Oxígeno/análisis , Calibración , Modelos Lineales , Microscopía Electrónica de Rastreo , Oxígeno/química , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Factores de Tiempo
5.
J Biomed Mater Res A ; 66(2): 417-24, 2003 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-12889013

RESUMEN

We report the results of a high throughput screening campaign that is aimed to develop a biodegradable polymer-based formulation to deliver active keratinocyte growth factor (KGF) and provide a means to tune the KGF delivery rate. A statistical design strategy was used to prepare and screen a series of polymer blends that were composed of poly(lactic acid) (PLA), poly(glycolic acid) (PGA), and the surfactant sodium bis(ethylhexyl)sulfosuccinate (Aerosol-OT, AOT). Chloroform was the solvent. Our high throughput screening method used a two-tiered assessment strategy. At Level 1, we identified "lead" KFG-loaded formulations that exhibited KGF emission spectra that were the most similar to the native KGF spectrum recorded in buffer. At Level 2, we used steady-state emission and a homogeneous polarization immunoassay strategy to determine the concentration of total and active KGF, respectively, liberated from the lead formulations during biodegradation. After preparing and screening 2500 formulations, we identified several viable, lead formulations. An analysis of the data showed that the combination of PLA, PGA, and AOT were important to yield a high fraction of active KGF upon release from the formulation; no combination of any two together produced an effect as good as the ternary formulation. The optimum formulations that yielded the highest fraction of active KGF upon release had the following general features: PLA/PGA (w/w) near unity, AOT loading of 100-200 mM, water/AOT mole ratio of 10-20, and a pH between 6 and 8. PLA alone cast from chloroform delivered KGF, but that KGF did not bind to anti-KGF antibodies (i.e., it was inactive). We can tune the KGF release kinetics by more than two orders of magnitude while maintaining the KGF activity upon liberation from the formulation by adjusting the PLA molecular weight.


Asunto(s)
Materiales Biocompatibles/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Polímeros/metabolismo , Factor 7 de Crecimiento de Fibroblastos , Inmunoensayo , Cinética , Análisis Espectral
6.
Anal Chem ; 74(24): 6177-84, 2002 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-12510736

RESUMEN

We report the first biosensor arrays based on pin printing protein-doped xerogels. The individual biosensor elements are on the order of 100 microm in diameter. Arrays are formed (1) onto a planar substrate that is excited by an external source (laser) or (2) directly on the face of a light-emitting diode. We illustrate the potential of our approach by fabricating, testing, and characterizing four types of pin-printed biosensor arrays (PPBSA) for the simultaneous detection of glucose and O2. The analytically reliable operating ranges for the PPBSAs are 0.1-10 mM for glucose and 0.1-100% for O2. The PPBSAs exhibit short- and long-term reproducibilities of no worse than 4 and 8%, respectively. The overall array-to-array response reproducibilities are < or = 12%. These results demonstrate for the first time the combination sol-gel processing and pin printing methods as a way to rapidly form ensembles of integrated, reusable, and stable biosensor arrays for simultaneous multianalyte detection.


Asunto(s)
Técnicas Biosensibles/métodos , Geles , Proteínas , Técnicas Biosensibles/instrumentación , Geles/química , Glucosa/análisis , Oxígeno/análisis , Proteínas/química , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA