Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 7(1): 609, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769408

RESUMEN

Dairy fat has a unique lipid profile; it is rich in short- and medium-chain saturated fatty acids that induce ketone production and has a balanced ω6/ω3 ratio that promotes cognitive development in early life. Moreover, the high consumption of vegetable oils in pregnant and lactating women raises concerns regarding the quality of lipids provided to offspring. Here, we investigate maternal dairy fat intake during gestation and lactation in a highly valuable primate model for infant nutritional studies, the gray mouse lemur (Microcebus murinus). Two experimental diets are provided to gestant mouse lemurs: a dairy fat-based (DF) or vegetable fat-based diet (VF). The psychomotor performance of neonates is tested during their first 30 days. Across all tasks, we observe more successful neonates born to mothers fed a DF diet. A greater rate of falls is observed in 8-day-old VF neonates, which is associated with delayed psychomotor development. Our findings suggest the potential benefits of lipids originating from a lactovegetarian diet compared with those originating from a vegan diet for the psychomotor development of neonates.


Asunto(s)
Cheirogaleidae , Cognición , Grasas de la Dieta , Animales , Femenino , Cheirogaleidae/fisiología , Embarazo , Animales Recién Nacidos , Desempeño Psicomotor , Productos Lácteos , Fenómenos Fisiologicos Nutricionales Maternos , Lactancia , Masculino , Aceites de Plantas/administración & dosificación
2.
Cells ; 11(17)2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36078135

RESUMEN

Peripheral adiponectin acts on the hypothalamus to inhibit energy expenditure and increase food intake through its receptors AdipoR1 and adipoR2. The hypothalamic expression of adiponectin is poorly documented. We hypothesize that whether hypothalamic adiponectin is confirmed, its expression and secretion could be regulated as peripheral adiponectin. Thus, in the present work, we aim to determine whether adiponectin is expressed in the hypothalamus and in two neuronal cell lines and investigate the potential mechanisms regulating its neuronal expression. Using immunohistochemistry, we show that adiponectin is expressed in the mediobasal hypothalamic neurons of mice. Adiponectin expression is also evidenced in two neuronal cell lines mHypo POMC (an adult mouse hypothalamic cell line) and SH-SY5Y (human neuroblastoma). The neuronal expression of adiponectin is increased in response to rosiglitazone treatment (a PPARγ agonist) and FGF21 and is decreased in insulin-resistant neurons. Furthermore, we show that adiponectin expressed by mHypo POMC neurons is secreted in a culture medium. Adiponectin also diminished the resistin-induced IL6 expression in SIMA9 cells, a microglia cell line. In conclusion, we evidenced the hypothalamic expression of adiponectin and its regulation at the neuronal level.


Asunto(s)
Adiponectina , Neuronas , Adiponectina/metabolismo , Adulto , Animales , Humanos , Ratones , Neuroblastoma/metabolismo , Neuronas/metabolismo , Proopiomelanocortina/metabolismo , Receptores de Adiponectina/metabolismo
3.
Cereb Cortex ; 32(7): 1365-1378, 2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-34491298

RESUMEN

We investigated the detrimental effects of chronic consumption of sweet or sweetened beverages in mice. We report that consumption of beverages containing small amounts of sucrose during several weeks impaired reward systems. This is evidenced by robust changes in the activation pattern of prefrontal brain regions associated with abnormal risk-taking and delayed establishment of decision-making strategy. Supporting these findings, we find that chronic consumption of low doses of artificial sweeteners such as saccharin disrupts brain regions' activity engaged in decision-making and reward processes. Consequently, this leads to the rapid development of inflexible decisions, particularly in a subset of vulnerable individuals. Our data also reveal that regular consumption, even at low doses, of sweet or sweeteners dramatically alters brain neurochemistry, i.e., dopamine content and turnover, and high cognitive functions, while sparing metabolic regulations. Our findings suggest that it would be relevant to focus on long-term consequences on the brain of sweet or sweetened beverages in humans, especially as they may go metabolically unnoticed.


Asunto(s)
Bebidas Azucaradas , Animales , Bebidas , Cognición , Ratones , Recompensa , Gusto/fisiología
4.
Metabolism ; 123: 154846, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34371064

RESUMEN

Oestrogens regulate body weight through their action on hypothalamus to modulate food intake and energy expenditure. Hypothalamic de novo ceramide synthesis plays a central role on obesity induced by oestrogen deficiency. Depletion in oestrogens is also known to be associated with glucose intolerance, which favours type 2 diabetes (T2D). However, the implication of hypothalamic ceramide in the regulation of glucose homeostasis by oestrogen is unknown. Here, we studied glucose homeostasis and insulin secretion in ovariectomized (OVX) female rats. OVX induces body weight gain associated with a hypothalamic inflammation and impaired glucose homeostasis. Genetic blockade of ceramide synthesis in the ventromedial nucleus of the hypothalamus (VMH) reverses hypothalamic inflammation and partly restored glucose tolerance induced by OVX. Furthermore, glucose-stimulated insulin secretion (GSIS) is increased in OVX rats due to a raise of insulin secretion second phase, a characteristic of early stage of T2D. In contrast, GSIS from isolated islets of OVX rats is totally blunted. Inhibition of ceramide synthesis in the VMH restores GSIS from isolated OVX islets and represses the second phase of insulin secretion. Stimulation of oestrogen receptor α (ERα) by oestradiol (E2) down-regulates ceramide synthesis in hypothalamic neuronal GT1-7 cells but no in microglial SIM-A9 cells. In contrast, genetic inactivation of ERα in VMH upregulates ceramide synthesis. These results indicate that hypothalamic neuronal de novo ceramide synthesis triggers the OVX-dependent impairment of glucose homeostasis which is partly mediated by a dysregulation of GSIS.


Asunto(s)
Glucemia/fisiología , Ceramidas/biosíntesis , Hipotálamo/metabolismo , Secreción de Insulina/fisiología , Insuficiencia Ovárica Primaria/fisiopatología , Animales , Regulación hacia Abajo , Estradiol/farmacología , Femenino , Silenciador del Gen , Homeostasis , Microglía/efectos de los fármacos , Microglía/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ovariectomía , Ratas , Ratas Sprague-Dawley , Serina C-Palmitoiltransferasa/genética , Aumento de Peso
6.
Mol Cell Endocrinol ; 533: 111341, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34082045

RESUMEN

Resistin has been firstly discovered in mice and was identified as an adipose tissue-secreted hormone or adipokine linking obesity and insulin resistance. In humans, resistin has been characterized as a hormone expressed and secreted by Immune cells especially by macrophages, and was linked to many inflammatory responses including inflammation of adipose tissue due to macrophages' infiltration. Human and mouse resistin display sequence and structural similarities and also dissimilarities that could explain their different expression pattern. In mice, strong pieces of evidence clearly associated high resistin plasma levels to obesity and insulin resistance suggesting that resistin could play an important role in the onset and progression of obesity and insulin resistance via resistin-induced inflammation. In humans, the link between resistin and obesity/insulin resistance is still a matter of debate and needs more epidemiological studies. Also, resistin has been linked to other chronic diseases such as cardiovascular diseases and cancers where resistin has been proposed in many studies as a biological marker.


Asunto(s)
Enfermedades Cardiovasculares/metabolismo , Enfermedades Metabólicas/metabolismo , Neoplasias/metabolismo , Resistina/metabolismo , Animales , Biomarcadores/metabolismo , Enfermedades Cardiovasculares/genética , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Humanos , Macrófagos/metabolismo , Enfermedades Metabólicas/genética , Ratones , Neoplasias/genética , Resistina/genética , Especificidad de la Especie
7.
Sci Rep ; 11(1): 5427, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33686181

RESUMEN

Saturated fatty acids such as palmitic acid promote inflammation and insulin resistance in peripheral tissues, contrasting with the protective action of polyunsaturated fatty acids such docosahexaenoic acid. Palmitic acid effects have been in part attributed to its potential action through Toll-like receptor 4. Beside, resistin, an adipokine, also promotes inflammation and insulin resistance via TLR4. In the brain, palmitic acid and resistin trigger neuroinflammation and insulin resistance, but their link at the neuronal level is unknown. Using human SH-SY5Yneuroblastoma cell line we show that palmitic acid treatment impaired insulin-dependent Akt and Erk phosphorylation whereas DHA preserved insulin action. Palmitic acid up-regulated TLR4 as well as pro-inflammatory cytokines IL6 and TNFα contrasting with DHA effect. Similarly to palmitic acid, resistin treatment induced the up-regulation of IL6 and TNFα as well as NFκB activation. Importantly, palmitic acid potentiated the resistin-dependent NFkB activation whereas DHA abolished it. The recruitment of TLR4 to membrane lipid rafts was increased by palmitic acid treatment; this is concomitant with the augmentation of resistin-induced TLR4/MYD88/TIRAP complex formation mandatory for TLR4 signaling. In conclusion, palmitic acid increased TLR4 expression promoting resistin signaling through TLR4 up-regulation and its recruitment to membrane lipid rafts.


Asunto(s)
Resistencia a la Insulina , Proteínas de Neoplasias/metabolismo , Neuroblastoma/metabolismo , Ácido Palmítico/farmacología , Resistina/metabolismo , Línea Celular Tumoral , Humanos , Inflamación/metabolismo
8.
Mol Metab ; 47: 101172, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33513436

RESUMEN

OBJECTIVE: Astrocytes are glial cells proposed as the main Sonic hedgehog (Shh)-responsive cells in the adult brain. Their roles in mediating Shh functions are still poorly understood. In the hypothalamus, astrocytes support neuronal circuits implicated in the regulation of energy metabolism. In this study, we investigated the impact of genetic activation of Shh signaling on hypothalamic astrocytes and characterized its effects on energy metabolism. METHODS: We analyzed the distribution of gene transcripts of the Shh pathway (Ptc, Gli1, Gli2, and Gli3) in astrocytes using single molecule fluorescence in situ hybridization combined with immunohistofluorescence of Shh peptides by Western blotting in the adult mouse hypothalamus. Based on the metabolic phenotype, we characterized Glast-CreERT2-YFP-Ptc-/- (YFP-Ptc-/-) mice and their controls over time and under a high-fat diet (HFD) to investigate the potential effects of conditional astrocytic deletion of the Shh receptor Patched (Ptc) on metabolic efficiency, insulin sensitivity, and systemic glucose metabolism. Molecular and biochemical assays were used to analyze the alteration of key pathways modulating energy metabolism, insulin sensitivity, glucose uptake, and inflammation. Primary astrocyte cultures were used to evaluate a potential role of Shh signaling in astrocytic glucose uptake. RESULTS: Shh peptides were the highest in the hypothalamic extracts of adult mice and a large population of hypothalamic astrocytes expressed Ptc and Gli1-3 mRNAs. Characterization of Shh signaling after conditional Ptc deletion in the YFP-Ptc-/- mice revealed heterogeneity in hypothalamic astrocyte populations. Interestingly, activation of Shh signaling in Glast+ astrocytes enhanced insulin responsiveness as evidenced by glucose and insulin tolerance tests. This effect was maintained over time and associated with lower blood insulin levels and also observed under a HFD. The YFP-Ptc-/- mice exhibited a lean phenotype with the absence of body weight gain and a marked reduction of white and brown adipose tissues accompanied by increased whole-body fatty acid oxidation. In contrast, food intake, locomotor activity, and body temperature were not altered. At the cellular level, Ptc deletion did not affect glucose uptake in primary astrocyte cultures. In the hypothalamus, activation of the astrocytic Shh pathway was associated with the upregulation of transcripts coding for the insulin receptor and liver kinase B1 (LKB1) after 4 weeks and the glucose transporter GLUT-4 after 32 weeks. CONCLUSIONS: Here, we define hypothalamic Shh action on astrocytes as a novel master regulator of energy metabolism. In the hypothalamus, astrocytic Shh signaling could be critically involved in preventing both aging- and obesity-related metabolic disorders.


Asunto(s)
Astrocitos/metabolismo , Glucosa/metabolismo , Proteínas Hedgehog/metabolismo , Receptores Patched/metabolismo , Envejecimiento , Animales , Astrocitos/patología , Metabolismo Energético/genética , Células HEK293 , Proteínas Hedgehog/genética , Humanos , Hipotálamo/metabolismo , Hipotálamo/patología , Hibridación Fluorescente in Situ , Ratones , Ratones Endogámicos C57BL , Células 3T3 NIH , Neuronas/metabolismo , Obesidad , Receptores Patched/deficiencia , Receptores Patched/genética , Transducción de Señal , Activación Transcripcional
9.
Artículo en Inglés | MEDLINE | ID: mdl-31133989
10.
Artículo en Inglés | MEDLINE | ID: mdl-30906281

RESUMEN

Low-grade inflammation and insulin resistance are among the clinical features of obesity that are thought to promote the progressive onset of type 2 diabetes. However, the underlying mechanisms linking these disorders remain not fully understood. Recent reports pointed out hypothalamic inflammation as a major step in the onset of obesity-induced insulin resistance. In light of the increasing prevalence of obesity and T2D, two worldwide public health concerns, deciphering mechanisms implicated in hypothalamic inflammation constitutes a major challenge in the field of insulin-resistance/obesity. Several clinical and experimental studies have identified resistin as a key hormone linking insulin-resistance to obesity, notably through the activation of Toll Like Receptor (TLR) 4 signaling pathways. In this review, we present an overview of the molecular mechanisms underlying obesity-induced hypothalamic inflammation and insulin resistance with peculiar focus on the role of resistin/TLR4 signaling pathway.

11.
PLoS One ; 14(3): e0213267, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30845245

RESUMEN

Resistin promotes hypothalamic neuroinflammation and insulin resistance through Toll like receptor 4 (TLR4), this hormone is thought to be a link between obesity and insulin-resistance. Indeed, resistin plasma levels are higher in obese and insulin resistant subjects. However, the impact of maternal resistin on the predisposition of offspring to hypothalamic neuroinflammation is unknown. Here, female mice were treated with resistin during gestation/lactation periods, then hypothalamic neuroinflammation was investigated in male offspring at p28 and p90. At p28, resistin increased the expression of inflammation markers (IL6, TNFα and NFκB) and TLR4 in the hypothalamus and decreased both hypothalamic insulin and leptin receptors' expression. The hypothalamic up-regulation IL6, TNFα and TLR4 was sustained until p90 promoting most likely hypothalamic inflammation. Maternal resistin also increased IL6 and TNFα in the adipose tissue of offspring at p90 associated with a higher body weight gain. In contrast, liver and muscle were not affected. These findings reveal that the augmentation of maternal resistin during gestation and lactation promotes hypothalamic and adipose tissue inflammation of offspring as evidenced by sustained increase of inflammation markers from weaning to adulthood. Thus, maternal resistin programs offspring hypothalamic and adipose tissue inflammation predisposing then offspring to body weight gain.


Asunto(s)
Intolerancia a la Glucosa/etiología , Hipotálamo/inmunología , Inflamación/etiología , Resistencia a la Insulina , Insulinoma/etiología , Resistina/efectos adversos , Aumento de Peso/efectos de los fármacos , Animales , Animales Recién Nacidos , Peso Corporal , Femenino , Intolerancia a la Glucosa/metabolismo , Intolerancia a la Glucosa/patología , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Hipotálamo/patología , Inflamación/metabolismo , Inflamación/patología , Mediadores de Inflamación/metabolismo , Insulinoma/metabolismo , Insulinoma/patología , Lactancia , Leptina/metabolismo , Masculino , Fenómenos Fisiologicos Nutricionales Maternos , Ratones , Embarazo , Resistina/administración & dosificación , Destete
12.
J Endocrinol ; 238(1): 77-89, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29773580

RESUMEN

Autophagy is a non-selective degradation pathway induced in energy-deprived cells and in non-starved cells by participating in cellular inflammatory responses mainly through the elimination of injured and aged mitochondria that constitute an important source of reactive oxygen species. We have previously reported that resistin/TLR4 signaling pathway induces inflammation and insulin resistance in neuronal cell. However, the impact of resistin-induced inflammation on neuronal autophagy is unknown. In the present study, we hypothesized that resistin-induced neuroinflammation could be attributed, at least partially, to the impairment of autophagy pathways in neuronal cells. Our data show that resistin decreases neuronal autophagy as evidenced by the repression of the main autophagy markers in SH-SY5Y human neuroblastoma cell line. Furthermore, the silencing of TLR4 completely abolished these effects. Resistin also inhibits AMPK phosphorylation and increases that of Akt/mTOR contrasting with activated autophagy where AMPK phosphorylation is augmented and mTOR inhibited. In vivo, resistin treatment inhibits the mRNA expression of autophagy markers in the hypothalamus of WT mice but not in Tlr4-/- mice. In addition, resistin strongly diminished LC3 (a marker of autophagy) labeling in the arcuate nucleus of WT mice, and this effect is abolished in Tlr4-/- mice. Taken together, our findings clearly reveal resistin/TLR4 as a new regulatory pathway of neuronal autophagy.


Asunto(s)
Autofagia/efectos de los fármacos , Neuronas/efectos de los fármacos , Resistina/farmacología , Receptor Toll-Like 4/fisiología , Animales , Autofagia/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/fisiología , Resistina/fisiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Receptor Toll-Like 4/genética , Células Tumorales Cultivadas
13.
Front Mol Neurosci ; 11: 90, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29643765

RESUMEN

Epidemiological reports and studies using rodent models indicate that early exposure to nutrient and/or hormonal challenges can reprogram metabolism at adulthood. Hypothalamic arcuate nucleus (ARC) integrates peripheral and central signals to adequately regulate energy homeostasis. microRNAs (miRNAs) participate in the control of gene expression of large regulatory networks including many signaling pathways involved in epigenetics regulations. Here, we have characterized and compared the miRNA population of ARC of adult male rats continuously exposed to a balanced metabolic environment to the one of adult male rats exposed to an unbalanced high-fat/high-carbohydrate/moderate-protein metabolic environment during the perinatal period and/or at adulthood that consequently displayed hyperinsulinemia and/or hyperleptinemia. We identified more than 400 miRNA species in ARC of adult male rats. By comparing the miRNA content of six biological replicates in each of the four perinatal/adult environments/rat groups, we identified the 10 miRNAs specified by clusters miR-96/182/183, miR-141/200c, and miR-200a/200b/429 as miRNAs of systematic and uncommonly high variation of expression. This uncommon variation of expression may underlie high individual differences in aging disease susceptibilities. By comparing the miRNA content of the adult ARC between the rat groups, we showed that the miRNA population was not affected by the unbalanced adult environment while, in contrast, the expression of 11 miRNAs was repeatedly impacted by the perinatal unbalanced environment. Our data revealed a miRNA response of adult ARC to early metabolic environmental challenge.

14.
Best Pract Res Clin Endocrinol Metab ; 30(5): 641-651, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27923457

RESUMEN

The brain is considered a major site for microRNA (miRNA) expression; as evidenced by several studies reporting microarray data of different brain substructures. The hypothalamus is among the brain regions that plays a crucial role in integrating signals from other brain nuclei as well as environmental, hormonal, metabolic and neuronal signals from the periphery in order to deliver an adequate response. The hypothalamus controls vital functions such as reproduction, energy homeostasis, water balance, circadian rhythm and stress. These functions need a high neuronal plasticity to adequately respond to physiological, environmental and psychological stimuli that could be limited to a specific temporal period during life or are cyclic events. In this context, miRNAs constitute major regulators and coordinators of gene expression. Indeed, in response to specific stimuli, changes in miRNA expression profiles finely tune specific mRNA targets to adequately fit to the immediate needs through mainly the modulation of neuronal plasticity.


Asunto(s)
Hipotálamo/metabolismo , MicroARNs/genética , Animales , Metabolismo Energético , Homeostasis , Humanos , Hipotálamo/fisiología , MicroARNs/metabolismo , Plasticidad Neuronal
15.
Sci Rep ; 6: 24896, 2016 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-27118433

RESUMEN

MicroRNAs (miRNAs) modulate gene expression in male germ cells and somatic tissues of mammals on a genome-wide scale. Hundreds of miRNAs are encoded by mammalian genomes, a large fraction of which is expressed in brain. Here we have investigated the complexity and dynamics of miRNA transcriptomes that associate with neuronal network maturation of hypothalamic arcuate nucleus and median eminence (ARC/ME) in rat by analysing more than 300 miRNAs from 3-7 biological replicates at 5 postnatal time-points. The network connecting ARC/ME to other hypothalamic and extra-hypothalamic regions maturates in an environment-dependent manner. We therefore analyzed miRNA transcriptomes of progeny of dams fed either a balanced or unbalanced diet during gestation and lactation. More than 30% of the miRNAs displayed significative changes of expression between stages P8 and P14, and P21 and P28; half of the changes were greater than 3-fold. Among those miRNAs were well-known and dozens of still poorly documented miRNAs. Progeny of dams fed an unbanced diet displayed a severe growth retardation phenotype, lower levels of plasma leptin but almost identical miRNA transcriptomes. Together these data demonstrate that two substantial and robust changes in miRNA transcriptome of ARC/ME occur at a period crucial for neuronal network functional organization.


Asunto(s)
Perfilación de la Expresión Génica , Hipotálamo/crecimiento & desarrollo , MicroARNs/análisis , Animales , Dieta/métodos , Ratas
16.
Diabetes ; 65(4): 913-26, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26740596

RESUMEN

Adiponectin, an insulin-sensitizing hormone, and resistin, known to promote insulin resistance, constitute a potential link between obesity and type 2 diabetes. In addition, fibroblast growth factor (FGF)21 has effects similar to those of adiponectin in regulating glucose and lipid metabolism and insulin sensitivity. However, the interplay between adiponectin, FGF21, and resistin signaling pathways during the onset of insulin resistance is unknown. Here, we investigated whether central resistin promotes insulin resistance through the impairment of adiponectin and FGF21 signaling. We show that chronic intracerebroventricular resistin infusion downregulated both hypothalamic and hepatic APPL1, a key protein in adiponectin signaling, associated with decreased Akt-APPL1 interaction and an increased Akt association with its endogenous inhibitor tribbles homolog 3. Resistin treatment also decreased plasma adiponectin levels and reduced both hypothalamic and peripheral expression of adiponectin receptors. Additionally, we report that intracerebroventricular resistin increased plasma FGF21 levels and downregulated its receptor components in the hypothalamus and peripheral tissues, promoting FGF21 resistance. Interestingly, we also show that resistin effects were abolished in TLR4 knockout mice and in neuronal cells expressing TLR4 siRNAs. Our study reveals a novel mechanism of insulin resistance onset orchestrated by a central resistin-TLR4 pathway that impairs adiponectin signaling and promotes FGF21 resistance.


Asunto(s)
Adiponectina/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Resistencia a la Insulina , Resistina/farmacología , Receptor Toll-Like 4/fisiología , Animales , Células Cultivadas , Resistencia a Medicamentos/efectos de los fármacos , Humanos , Infusiones Intraventriculares , Resistencia a la Insulina/genética , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratas , Ratas Wistar , Resistina/administración & dosificación , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Receptor Toll-Like 4/genética
17.
J Endocrinol ; 228(1): 1-12, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26459640

RESUMEN

The beneficial effect of polyunsaturated omega-3 fatty acid (w-3 FA) consumption regarding cardiovascular diseases, insulin resistance and inflammation has been widely reported. Fish oil is considered as the main source of commercialized w-3 FAs, and other alternative sources have been reported such as linseed or microalgae. However, despite numerous reports, the underlying mechanisms of action of w-3 FAs on insulin resistance are still not clearly established, especially those from microalgae. Here, we report that Odontella aurita, a microalga rich in w-3 FAs eicosapentaenoic acid, prevents high fat diet-induced insulin resistance and inflammation in the liver of Wistar rats. Indeed, a high fat diet (HFD) increased plasma insulin levels associated with the impairment of insulin receptor signaling and the up-regulation of toll-like receptor 4 (TLR4) expressions. Importantly, Odontella aurita-enriched HFD (HFOA) reduces body weight and plasma insulin levels and maintains normal insulin receptor expression and responsiveness. Furthermore, HFOA decreased TLR4 expression, JNK/p38 phosphorylation and pro-inflammatory factors. In conclusion, we demonstrate for the first time, to our knowledge, that diet supplementation with whole Ondontella aurita overcomes HFD-induced insulin resistance through the inhibition of TLR4/JNK/p38 MAP kinase signaling pathways.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Dieta , Ácidos Grasos Omega-3/administración & dosificación , Resistencia a la Insulina , Hepatopatías/prevención & control , Microalgas , Adiposidad , Animales , Peso Corporal , Suplementos Dietéticos , Ácido Eicosapentaenoico/administración & dosificación , Hepatitis/prevención & control , Insulina/sangre , Lípidos/sangre , Hígado/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Fosforilación , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 4/antagonistas & inhibidores
18.
J Endocrinol ; 226(1): 67-80, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25994005

RESUMEN

Malnutrition in the elderly is accompanied by several metabolic dysfunctions, especially alterations in energy homeostasis regulation and a loss of insulin responsiveness. Nutritional recommendations aim to enrich food with high protein and energy supplements, and protein composition and lipid quality have been widely studied. Despite the numerous studies that have examined attempts to overcome malnutrition in the elderly through such nutritional supplementation, it is still necessary to study the effects of a combination of protein, lipids, and vitamin D (VitD). This can be done in animal models of elderly malnutrition. In the present study, we investigated the effects of several diet formulae on insulin responsiveness, inflammation, and the hypothalamic expression of key genes that are involved in energy homeostasis control. To mimic elderly malnutrition in humans, elderly Wistar rats were food restricted (R, -50%) for 12 weeks and then refed for 4 weeks with one of four different isocaloric diets: a control diet; a diet where milk soluble protein (MSP) replaced casein; a blend of milk fat, rapeseed, and DHA (MRD); or a full formula (FF) diet that combined MSP and a blend of MRD (FF). All of the refeeding diets contained VitD. We concluded that: (i) food restriction led to the upregulation of insulin receptor in liver and adipose tissue accompanied by increased Tnfα in the hypothalamus; (ii) in all of the refed groups, refeeding led to similar body weight gain during the refeeding period; and (iii) refeeding with MSP and MRD diets induced higher food intake on the fourth week of refeeding, and this increase was associated with reduced hypothalamic interleukin 6 expression.


Asunto(s)
Envejecimiento/fisiología , Suplementos Dietéticos , Ingestión de Alimentos/fisiología , Hipotálamo/fisiopatología , Interleucina-6/genética , Desnutrición/dietoterapia , Leche , Anciano , Envejecimiento/genética , Envejecimiento/patología , Animales , Grasas de la Dieta/administración & dosificación , Suplementos Dietéticos/análisis , Modelos Animales de Enfermedad , Ingestión de Alimentos/genética , Metabolismo Energético/genética , Expresión Génica , Humanos , Hipotálamo/patología , Resistencia a la Insulina , Masculino , Desnutrición/genética , Desnutrición/fisiopatología , Leche/química , Proteínas de la Leche/administración & dosificación , Ratas , Ratas Wistar , Solubilidad , Factor de Necrosis Tumoral alfa/genética , Vitamina D/administración & dosificación , Aumento de Peso
19.
Mol Neurobiol ; 52(1): 363-74, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25169083

RESUMEN

Obesity is considered as a risk factor for mood disorders including depression. Nevertheless, the mechanisms underlying this association are not clearly understood. To address this issue, we investigated the impact of high-fat (HF)-diet-induced obesity on depressive-like behavior and on serotonin (5-HT)-dependent Akt/glycogen synthase kinase 3ß (GSK3ß) signaling in the dentate gyrus (DG) of the hippocampus, which has been associated with mood regulation. We first showed that a HF diet induced significant overweight and hyperglycemia as well as a depressive-like behavior in adult Wistar rats. By using an ex vivo approach on brain slices, we demonstrated that 5-HT activates the Akt/GSK3ß cascade in the DG of control chow (C) diet-fed animals and that a 16-week HF diet feeding abolishes this activation, concurrently with a desensitization of leptin and insulin signaling in the same region. Furthermore, depressive-like behavior inversely correlated with 5-HT-induced phosphorylation of GSK3ß in the subgranular neurons of the DG. Interestingly, a substitution of HF with C diet for 6 weeks induced a total loss of depressive symptoms, whereas body weight and glycemia remained significantly higher compared to control rats. In addition, food restoration led to a recovery of the Akt/GSK3ß signaling pathway activation in the DG. In parallel, we observed a negative correlation between body weight and cell proliferation in the subgranular zone of the DG. To conclude, we provide evidence for a desensitization of 5-HT-induced Akt/GSK3ß signaling and an impaired cell proliferation in the DG by HF diet, suggesting novel molecular mechanisms linking obesity to depression.


Asunto(s)
Depresión/complicaciones , Depresión/enzimología , Glucógeno Sintasa Quinasa 3/metabolismo , Hipocampo/enzimología , Obesidad/complicaciones , Obesidad/enzimología , Animales , Peso Corporal/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Giro Dentado/enzimología , Giro Dentado/patología , Depresión/fisiopatología , Dieta Alta en Grasa , Ingestión de Energía/efectos de los fármacos , Conducta Alimentaria/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta , Hipocampo/patología , Inmunohistoquímica , Insulina/farmacología , Leptina/farmacología , Masculino , Actividad Motora/efectos de los fármacos , Neuronas/metabolismo , Obesidad/fisiopatología , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Wistar , Serotonina/metabolismo
20.
Mol Genet Genomics ; 289(5): 795-806, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24752400

RESUMEN

PTP1B is an important negative regulator of insulin and other signaling pathways in mammals. However, the role of PTP1B in the regulation of RAS-MAPK signaling remains open to deliberation, due to conflicting evidence from different experimental systems. The Drosophila orthologue of mammalian PTP1B, PTP61F, has until recently remained largely uncharacterized. To establish the potential role of PTP61F in the regulation of signaling pathways in Drosophila and particularly to help resolve its fundamental function in RAS-MAPK signaling, we generated a new allele of Ptp61F as well as employed both RNA interference and overexpression alleles. Our results validate recent data showing that the activity of insulin and Abl kinase signaling is increased in Ptp61F mutants and RNA interference lines. Importantly, we establish negative regulation of the RAS/MAPK pathway by Ptp61F activity in whole animals. Of particular interest, our results document the modulation of hyperactive MAP kinase activity by Ptp61F alleles, showing that the phosphatase intervenes to directly or indirectly regulate MAP kinase itself.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila melanogaster/enzimología , Sistema de Señalización de MAP Quinasas , Proteína Tirosina Fosfatasa no Receptora Tipo 1/fisiología , Proteínas Tirosina Fosfatasas no Receptoras/fisiología , Animales , Ojo Compuesto de los Artrópodos/enzimología , Ojo Compuesto de los Artrópodos/crecimiento & desarrollo , Drosophila melanogaster/crecimiento & desarrollo , Epistasis Genética , Receptores ErbB/metabolismo , Femenino , Estudios de Asociación Genética , Masculino , Datos de Secuencia Molecular , Alas de Animales/enzimología , Alas de Animales/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...