Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brain Behav Immun ; 119: 572-596, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38663771

RESUMEN

Chronic stress enhances the risk of neuropsychiatric disorders and contributes to the aggravation and chronicity of pain. The development of stress-associated diseases, including pain, is affected by individual vulnerability or resilience to stress, although the mechanisms remain elusive. We used the repeated social defeat stress model promoting susceptible and resilient phenotypes in male and female mice and induced knee mono-arthritis to investigate the impact of stress vulnerability on pain and immune system regulation. We analyzed different pain-related behaviors, measured blood cytokine and immune cell levels, and performed histological analyses at the knee joints and pain/stress-related brain areas. Stress susceptible male and female mice showed prolonged arthritis-associated hypersensitivity. Interestingly, hypersensitivity was exacerbated in male but not female mice. In males, stress promoted transiently increased neutrophils and Ly6Chigh monocytes, lasting longer in susceptible than resilient mice. While resilient male mice displayed persistently increased levels of the anti-inflammatory interleukin (IL)-10, susceptible mice showed increased levels of the pro-inflammatory IL-6 at the early- and IL-12 at the late arthritis stage. Although joint inflammation levels were comparable among groups, macrophage and neutrophil infiltration was higher in the synovium of susceptible mice. Notably, only susceptible male mice, but not females, presented microgliosis and monocyte infiltration in the prefrontal cortex at the late arthritis stage. Blood Ly6Chigh monocyte depletion during the early inflammatory phase abrogated late-stage hypersensitivity and the associated histological alterations in susceptible male mice. Thus, recruitment of blood Ly6Chigh monocytes during the early arthritis phase might be a key factor mediating the persistence of arthritis pain in susceptible male mice. Alternative neuro-immune pathways that remain to be explored might be involved in females.

2.
Nat Metab ; 6(3): 494-513, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38443593

RESUMEN

Long-lasting pain stimuli can trigger maladaptive changes in the spinal cord, reminiscent of plasticity associated with memory formation. Metabolic coupling between astrocytes and neurons has been implicated in neuronal plasticity and memory formation in the central nervous system, but neither its involvement in pathological pain nor in spinal plasticity has been tested. Here we report a form of neuroglia signalling involving spinal astrocytic glycogen dynamics triggered by persistent noxious stimulation via upregulation of the Protein Targeting to Glycogen (PTG) in spinal astrocytes. PTG drove glycogen build-up in astrocytes, and blunting glycogen accumulation and turnover by Ptg gene deletion reduced pain-related behaviours and promoted faster recovery by shortening pain maintenance in mice. Furthermore, mechanistic analyses revealed that glycogen dynamics is a critically required process for maintenance of pain by facilitating neuronal plasticity in spinal lamina 1 neurons. In summary, our study describes a previously unappreciated mechanism of astrocyte-neuron metabolic communication through glycogen breakdown in the spinal cord that fuels spinal neuron hyperexcitability.


Asunto(s)
Astrocitos , Dolor , Ratones , Animales , Astrocitos/metabolismo , Dolor/metabolismo , Dolor/patología , Neuronas/metabolismo , Médula Espinal/metabolismo , Médula Espinal/patología , Glucógeno/metabolismo
3.
Nature ; 620(7974): 634-642, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37438525

RESUMEN

The physiological functions of mast cells remain largely an enigma. In the context of barrier damage, mast cells are integrated in type 2 immunity and, together with immunoglobulin E (IgE), promote allergic diseases. Allergic symptoms may, however, facilitate expulsion of allergens, toxins and parasites and trigger future antigen avoidance1-3. Here, we show that antigen-specific avoidance behaviour in inbred mice4,5 is critically dependent on mast cells; hence, we identify the immunological sensor cell linking antigen recognition to avoidance behaviour. Avoidance prevented antigen-driven adaptive, innate and mucosal immune activation and inflammation in the stomach and small intestine. Avoidance was IgE dependent, promoted by Th2 cytokines in the immunization phase and by IgE in the execution phase. Mucosal mast cells lining the stomach and small intestine rapidly sensed antigen ingestion. We interrogated potential signalling routes between mast cells and the brain using mutant mice, pharmacological inhibition, neural activity recordings and vagotomy. Inhibition of leukotriene synthesis impaired avoidance, but overall no single pathway interruption completely abrogated avoidance, indicating complex regulation. Collectively, the stage for antigen avoidance is set when adaptive immunity equips mast cells with IgE as a telltale of past immune responses. On subsequent antigen ingestion, mast cells signal termination of antigen intake. Prevention of immunopathology-causing, continuous and futile responses against per se innocuous antigens or of repeated ingestion of toxins through mast-cell-mediated antigen-avoidance behaviour may be an important arm of immunity.


Asunto(s)
Alérgenos , Reacción de Prevención , Hipersensibilidad , Mastocitos , Animales , Ratones , Alérgenos/inmunología , Reacción de Prevención/fisiología , Hipersensibilidad/inmunología , Inmunoglobulina E/inmunología , Mastocitos/inmunología , Estómago/inmunología , Vagotomía , Inmunidad Innata/inmunología , Inmunidad Mucosa/inmunología , Células Th2/inmunología , Citocinas/inmunología , Leucotrienos/biosíntesis , Leucotrienos/inmunología , Intestino Delgado/inmunología
4.
Front Hum Neurosci ; 17: 1141690, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37200949

RESUMEN

Investigating nocifensive withdrawal reflexes as potential surrogate marker for the spinal excitation level may widen the understanding of maladaptive nociceptive processing after spinal cord injury (SCI). The aim of this prospective, explorative cross-sectional observational study was to investigate the response behavior of individuals with SCI to noxious radiant heat (laser) stimuli and to assess its relation to spasticity and neuropathic pain, two clinical consequences of spinal hyperexcitability/spinal disinhibition. Laser stimuli were applied at the sole and dorsum of the foot and below the fibula head. Corresponding reflexes were electromyography (EMG) recorded ipsilateral. Motor responses to laser stimuli were analyzed and related to clinical readouts (severity of injury/spasticity/pain), using established clinical assessment tools. Twenty-seven participants, 15 with SCI (age 18-63; 6.5 years post-injury; AIS-A through D) and 12 non-disabled controls, [non-disabled controls (NDC); age 19-63] were included. The percentage of individuals with SCI responding to stimuli (70-77%; p < 0.001), their response rates (16-21%; p < 0.05) and their reflex magnitude (p < 0.05) were significantly higher compared to NDC. SCI-related reflexes clustered in two time-windows, indicating involvement of both A-delta- and C-fibers. Spasticity was associated with facilitated reflexes in SCI (Kendall-tau-b p ≤ 0.05) and inversely associated with the occurrence/severity of neuropathic pain (Fisher's exact p < 0.05; Eta-coefficient p < 0.05). However, neuropathic pain was not related to reflex behavior. Altogether, we found a bi-component motor hyperresponsiveness of SCI to noxious heat, which correlated with spasticity, but not neuropathic pain. Laser-evoked withdrawal reflexes may become a suitable outcome parameter to explore maladaptive spinal circuitries in SCI and to assess the effect of targeted treatment strategies. Registration: https://drks.de/search/de/trial/DRKS00006779.

5.
Nat Commun ; 14(1): 1899, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-37019973

RESUMEN

Mechanically silent nociceptors are sensory afferents that are insensitive to noxious mechanical stimuli under normal conditions but become sensitized to such stimuli during inflammation. Using RNA-sequencing and quantitative RT-PCR we demonstrate that inflammation upregulates the expression of the transmembrane protein TMEM100 in silent nociceptors and electrophysiology revealed that over-expression of TMEM100 is required and sufficient to un-silence silent nociceptors in mice. Moreover, we show that mice lacking TMEM100 do not develop secondary mechanical hypersensitivity-i.e., pain hypersensitivity that spreads beyond the site of inflammation-during knee joint inflammation and that AAV-mediated overexpression of TMEM100 in articular afferents in the absence of inflammation is sufficient to induce mechanical hypersensitivity in remote skin regions without causing knee joint pain. Thus, our work identifies TMEM100 as a key regulator of silent nociceptor un-silencing and reveals a physiological role for this hitherto enigmatic afferent subclass in triggering spatially remote secondary mechanical hypersensitivity during inflammation.


Asunto(s)
Nociceptores , Dolor , Animales , Ratones , Inflamación/metabolismo , Articulación de la Rodilla , Nociceptores/metabolismo , Dolor/metabolismo , Piel/metabolismo
6.
Sci Rep ; 13(1): 2289, 2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36759654

RESUMEN

Rodent behavior is affected by different environmental conditions. These do not only comprise experimental and housing conditions but also familiarization with the experimenter. However, specific effects on pain-related behavior and chronic pain conditions have not been examined. Therefore, we aimed to investigate the impact of different housing conditions, using individually ventilated and standard open top cages, inverted day-night cycles, and experimenter familiarization on male mice following peripheral neuropathy using the spared nerve injury (SNI) model. Using a multimodal approach, we evaluated evoked pain-related- using von Frey hair filaments, measured gait pattern with the CatWalk system, assessed anxiety- and depression-like behavior with the Elevated plus maze and tail suspension test, measured corticosterone metabolite levels in feces and utilized an integrative approach for relative-severity-assessment. Mechanical sensitivity differed between the cage systems and experimenter familiarization and was affected in both sham and SNI mice. Experimenter familiarization and an inverted day-night cycle reduced mechanical hypersensitivity in SNI and sham mice. SNI mice of the inverted day-night group displayed the slightest pronounced alterations in gait pattern in the Catwalk test. Anxiety-related behavior was only found in SNI mice of experimenter-familiarized mice compared to the sham controls. In addition, familiarization reduced the stress level measured by fecal corticosteroid metabolites caused by the pain and the behavioral tests. Although no environmental condition significantly modulated the severity in SNI mice, it influenced pain-affected phenotypes and is, therefore, crucial for designing and interpreting preclinical pain studies. Moreover, environmental conditions should be considered more in the reporting guidelines, described in more detail, and discussed as a potential influence on pain phenotypes.


Asunto(s)
Dolor Crónico , Enfermedades del Sistema Nervioso Periférico , Ratones , Animales , Masculino , Dolor Crónico/complicaciones , Enfermedad Crónica , Enfermedades del Sistema Nervioso Periférico/complicaciones , Depresión/etiología , Conducta Animal , Modelos Animales de Enfermedad , Hiperalgesia/etiología
7.
Front Vet Sci ; 9: 841431, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35372532

RESUMEN

The prospective severity assessment in animal experiments in the categories' non-recovery, mild, moderate, and severe is part of each approval process and serves to estimate the harm/benefit. Harms are essential for evaluating ethical justifiability, and on the other hand, they may represent confounders and effect modifiers within an experiment. Catalogs and guidelines provide a way to assess the experimental severity prospectively but are limited in adaptation due to their nature of representing particular examples without clear explanations of the assessment strategies. To provide more flexibility for current and future practices, we developed the modular Where-What-How (WWHow) concept, which applies findings from pre-clinical studies using surgical-induced pain models in mice and rats to provide a prospective severity assessment. The WWHow concept integrates intra-operative characteristics for predicting the maximum expected severity of surgical procedures. The assessed severity categorization is mainly congruent with examples in established catalogs; however, because the WWHow concept is based on anatomical location, detailed analysis of the tissue trauma and other intra-operative characteristics, it enables refinement actions, provides the basis for a fact-based dialogue with authority officials and other stakeholders, and helps to identify confounder factors of study findings.

9.
Neuron ; 109(20): 3283-3297.e11, 2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-34672983

RESUMEN

Deep brain temperature detection by hypothalamic warm-sensitive neurons (WSNs) has been proposed to provide feedback information relevant for thermoregulation. WSNs increase their action potential firing rates upon warming, a property that has been presumed to rely on the composition of thermosensitive ion channels within WSNs. Here, we describe a synaptic mechanism that regulates temperature sensitivity of preoptic WSNs and body temperature. Experimentally induced warming of the mouse hypothalamic preoptic area in vivo triggers body cooling. TRPM2 ion channels facilitate this homeostatic response and, at the cellular level, enhance temperature responses of WSNs, thereby linking WSN function with thermoregulation for the first time. Rather than acting within WSNs, we-unexpectedly-find TRPM2 to temperature-dependently increase synaptic drive onto WSNs by disinhibition. Our data emphasize a network-based interoceptive paradigm that likely plays a key role in encoding body temperature and that may facilitate integration of diverse inputs into thermoregulatory pathways.


Asunto(s)
Regulación de la Temperatura Corporal/genética , Inhibición Neural/genética , Neuronas/metabolismo , Área Preóptica/metabolismo , Canales Catiónicos TRPM/genética , Sensación Térmica/genética , Animales , Temperatura Corporal , Regulación de la Temperatura Corporal/fisiología , Interocepción/fisiología , Ratones , Ratones Noqueados , Área Preóptica/citología , Sinapsis , Canales Catiónicos TRPM/metabolismo
11.
Nat Commun ; 12(1): 426, 2021 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-33462216

RESUMEN

Painful neuropathy is a frequent complication in diabetes. Proopiomelanocortin (POMC) is an endogenous opioid precursor peptide, which plays a protective role against pain. Here, we report dysfunctional POMC-mediated antinociception in sensory neurons in diabetes. In streptozotocin-induced diabetic mice the Pomc promoter is repressed due to increased binding of NF-kB p50 subunit, leading to a loss in basal POMC level in peripheral nerves. Decreased POMC levels are also observed in peripheral nervous system tissue from diabetic patients. The antinociceptive pathway mediated by POMC is further impaired due to lysosomal degradation of µ-opioid receptor (MOR). Importantly, the neuropathic phenotype of the diabetic mice is rescued upon viral overexpression of POMC and MOR in the sensory ganglia. This study identifies an antinociceptive mechanism in the sensory ganglia that paves a way for a potential therapy for diabetic neuropathic pain.


Asunto(s)
Diabetes Mellitus Experimental/complicaciones , Neuropatías Diabéticas/patología , Nocicepción/fisiología , Proopiomelanocortina/deficiencia , Células Receptoras Sensoriales/patología , Anciano , Anciano de 80 o más Años , Animales , Diabetes Mellitus Experimental/inducido químicamente , Neuropatías Diabéticas/etiología , Femenino , Ganglios Espinales/citología , Ganglios Espinales/patología , Humanos , Lisosomas , Masculino , Ratones , Ratones Noqueados , Proopiomelanocortina/genética , Proteolisis , Receptores Opioides mu/genética , Receptores Opioides mu/metabolismo , Estreptozocina/toxicidad
12.
Pain ; 161(7): 1442-1458, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32132393

RESUMEN

Low back pain (LBP) is a highly prevalent and disabling condition whose initiating factors are poorly understood. It is known that psychological and physical stress is associated with LBP but the causal relationship, mechanisms, and mediators have not been elucidated, and a preclinical model enabling the investigation of causality and thereby critically contributing to clinical translation does not exist. In this study, we first established and characterized a myofascial LBP model in mice based on nerve growth factor (NGF) injection into the low back muscles. Second, we investigated the effect of 2 different stress paradigms on this mouse LBP model by applying the chronic unpredictable stress and vertical chronic restraint stress (vCRS) paradigms, to mimic psychological and psychophysical stress, respectively. In these studies, we combined longitudinal behavioral tests with gene and protein expression analysis in the muscle, dorsal root ganglia, and spinal cord. Nerve growth factor-induced LBP was characterized by long-lasting local and plantar mechanical hypersensitivity, cold hyperalgesia, decreased grip strength and wheel running activity, and time-dependent changes of neuropeptide and glial markers in the spinal cord. Interestingly, the exposure to chronic unpredictable stress slightly worsened pain behavior, whereas vCRS primed and highly aggravated pain in this LBP model, by causing per se the intramuscular upregulation of endogenous NGF and increased spinal astrocyte expression. Our mouse model, particularly the combination of NGF injection and vCRS, suggests that similar mechanisms are important in nonspecific LBP and might help to investigate certain aspects of stress-induced exacerbation of pain.


Asunto(s)
Dolor de la Región Lumbar , Animales , Modelos Animales de Enfermedad , Ganglios Espinales , Hiperalgesia/etiología , Ratones , Actividad Motora
15.
Neurosci Biobehav Rev ; 100: 335-343, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30885811

RESUMEN

The primary objective of preclinical pain research is to improve the treatment of pain. Decades of research using pain-evoked tests has revealed much about mechanisms but failed to deliver new treatments. Evoked pain-tests are often limited because they ignore spontaneous pain and motor or disruptive side effects confound interpretation of results. New tests have been developed to focus more closely on clinical goals such as reducing pathological pain and restoring function. The objective of this review is to describe and discuss several of these tests. We focus on: Grimace Scale, Operant Behavior, Wheel Running, Burrowing, Nesting, Home Cage Monitoring, Gait Analysis and Conditioned Place Preference/ Aversion. A brief description of each method is presented along with an analysis of the advantages and limitations. The pros and cons of each test will help researchers identify the assessment tool most appropriate to meet their particular objective to assess pain in rodents. These tests provide another tool to unravel the mechanisms underlying chronic pain and help overcome the translational gap in drug development.


Asunto(s)
Modelos Animales de Enfermedad , Dimensión del Dolor/métodos , Dolor/psicología , Animales , Conducta Animal , Condicionamiento Clásico , Condicionamiento Operante , Análisis de la Marcha , Ratones , Actividad Motora , Comportamiento de Nidificación , Nocicepción , Ratas , Investigación Biomédica Traslacional/métodos
16.
Eur J Pain ; 23(2): 285-306, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30098102

RESUMEN

BACKGROUND: Chronic pain is often accompanied by comorbidities like anxiety and depression. The temporal correlations, as well as the underlying mechanisms of these reciprocal correlations, are unclear. Moreover, preclinical studies examining emotional behaviour are very controversial, and a chronological analysis of anxiety-like behaviour in mouse pain models considering both genders has not been performed so far. METHODS: We used several behavioural tests to assess and validate anxiety-like behaviour in complete Freund's adjuvant (CFA) and spared nerve injury (SNI) pain models in C57BL/6 mice. Among these were the elevated plus maze test, open field test, hole-board test and light-dark test. Additionally, we included a late stage analysis of depression-like behaviour using the forced swim test. All tests were applied once for each cohort of mice. Importantly, we used C57BL/6N mice of both genders; we investigated the effect of social isolation, the impact of pain induction to either the right or left hind limb and also investigated C57BL/6J mice. RESULTS: The validity of test conditions was confirmed using the anxiogenic drugs Yohimbine and Pentylenetetrazol. Anxiety-like behaviour was analysed throughout the time period when mice exhibited hypersensitivity to mechanical stimuli. We did not observe any consistent alteration in anxiety-like behaviour at any of the investigated time points between 1 and 14 days following CFA-induced inflammation or 3 and 84 days following SNI surgery using different behavioural tests. CONCLUSIONS: Inflammatory and neuropathic pain conditions do not primarily evoke anxiety- and depression-like behavioural alterations within the herein investigated time period. SIGNIFICANCE: Anxiety-like behaviour is not primarily altered following CFA and SNI in C57BL6 mice, irrespective of the gender, mouse sub-strain, housing conditions or affected body side within the herein investigated time period.


Asunto(s)
Ansiedad/etiología , Dolor Crónico/psicología , Depresión/etiología , Neuralgia/psicología , Animales , Modelos Animales de Enfermedad , Emociones , Femenino , Adyuvante de Freund , Inflamación , Masculino , Ratones , Ratones Endogámicos C57BL
17.
Nat Commun ; 8(1): 1103, 2017 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-29062097

RESUMEN

Metabotropic glutamate receptor subtype 5 (mGluR5) is crucially implicated in the pathophysiology of Fragile X Syndrome (FXS); however, its dysfunction at the sub-cellular level, and related synaptic and cognitive phenotypes are unexplored. Here, we probed the consequences of mGluR5/Homer scaffold disruption for mGluR5 cell-surface mobility, synaptic N-methyl-D-aspartate receptor (NMDAR) function, and behavioral phenotypes in the second-generation Fmr1 knockout (KO) mouse. Using single-molecule tracking, we found that mGluR5 was significantly more mobile at synapses in hippocampal Fmr1 KO neurons, causing an increased synaptic surface co-clustering of mGluR5 and NMDAR. This correlated with a reduced amplitude of synaptic NMDAR currents, a lack of their mGluR5-activated long-term depression, and NMDAR/hippocampus dependent cognitive deficits. These synaptic and behavioral phenomena were reversed by knocking down Homer1a in Fmr1 KO mice. Our study provides a mechanistic link between changes of mGluR5 dynamics and pathological phenotypes of FXS, unveiling novel targets for mGluR5-based therapeutics.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/psicología , Receptor del Glutamato Metabotropico 5/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/metabolismo , Animales , Cognición , Modelos Animales de Enfermedad , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/genética , Hipocampo/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Plasticidad Neuronal , Receptor del Glutamato Metabotropico 5/genética , Receptores de N-Metil-D-Aspartato/genética , Sinapsis/genética
18.
Mol Pain ; 122016.
Artículo en Inglés | MEDLINE | ID: mdl-27306409

RESUMEN

BACKGROUND: There is an urgent need to develop and incorporate novel behavioral tests in classically used preclinical pain models. Most rodent studies are based upon stimulus-evoked hindpaw measurements even though chronic pain is usually a day and night experience. Chronic pain is indeed a debilitating condition that influences the sociability and the ability for voluntary tasks, but the relevant behavioral readouts for these aspects are mostly under-represented in the literature. Moreover, we lack standardization in most behavioral paradigms to guarantee reproducibility and ensure adequate discussion between different studies. This concerns not only the combination, application, and duration of particular behavioral tasks but also the effects of different housing conditions implicating social isolation. RESULTS: Our aim was to thoroughly characterize the classically used spared nerve injury model for 12 weeks following surgery. We used a portfolio of classical stimulus-evoked response measurements, detailed gait analysis with two different measuring systems (Dynamic weight bearing (DWB) system and CatWalk), as well as observer-independent voluntary wheel running and home cage monitoring (Laboras system). Additionally, we analyzed the effects of social isolation in all behavioral tasks. We found that evoked hypersensitivity temporally matched changes in static gait parameters, whereas some dynamic gait parameters were changed in a time-dependent manner. Interestingly, voluntary wheel running behavior was not affected in spared nerve injury mice but by social isolation. Besides a reduced climbing activity, spared nerve injury mice did not showed tremendous alterations in the home cage activity. CONCLUSION: This is the first longitudinal study providing detailed insights into various voluntary behavioral parameters related to pain and highlights the importance of social environment on spontaneous non-evoked behaviors in a mouse model of chronic neuropathy. Our results provide fundamental considerations for future experimental planning and discussion of pain-related behavioral changes.


Asunto(s)
Conducta Animal , Vivienda para Animales , Neuralgia/fisiopatología , Animales , Peso Corporal , Marcha , Masculino , Ratones Endogámicos C57BL , Nocicepción , Condicionamiento Físico Animal , Estimulación Física , Nervio Ciático/lesiones , Nervio Ciático/patología , Nervio Ciático/fisiopatología
19.
Pain ; 157(3): 687-697, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26588690

RESUMEN

Below-level central neuropathic pain (CNP) affects a large proportion of spinal cord injured individuals. To better define the dynamic changes of the spinal cord neural network contributing to the development of CNP after spinal cord injury (SCI), we characterized the morphological and behavioral correlates of CNP in female C57BL/6 mice after a moderate T11 contusion SCI (50 kdyn) and the influence of moderate physical activity. Compared with sham-operated animals, injured mice developed mechanical allodynia 2 weeks post injury when tested with small-diameter von Frey hair filaments (0.16 g and 0.4 g filament), but presented hyporesponsiveness to noxious mechanical stimuli (1.4 g filament). The mechano-sensory alterations lasted up to 35 days post injury, the longest time point examined. The response latency to heat stimuli already decreased significantly 10 days post injury reaching a plateau 2 weeks later. In contrast, injured mice developed remarkable hyposensitivity to cold stimuli. Animals that underwent moderate treadmill training (2 × 15 minutes; 5 d/wk) showed a significant reduction in the response rate to light mechanical stimuli as early as 6 days after training. Calcitonin gene-related peptide (CGRP) labeling in lamina III-IV of the dorsal horn revealed significant increases in CGRP-labeling density in injured animals compared with sham control animals. Importantly, treadmill training reduced CGRP-labeling density by about 50% (P < 0.01), partially reducing the injury-induced increases. Analysis of IB4-labeled nonpeptidergic sensory fibers revealed no differences between experimental groups. Abnormalities in temperature sensation were not influenced by physical activity. Thus, treadmill training partially resolves signs of below-level CNP after SCI and modulates the density of CGRP-labeled fibers.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina/metabolismo , Prueba de Esfuerzo/métodos , Hiperalgesia/metabolismo , Hiperalgesia/rehabilitación , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/rehabilitación , Animales , Frío/efectos adversos , Femenino , Calor/efectos adversos , Hiperalgesia/etiología , Ratones , Ratones Endogámicos C57BL , Traumatismos de la Médula Espinal/complicaciones , Factores de Tiempo , Tacto
20.
Pain Rep ; 1(1): e564, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29392189

RESUMEN

Most preclinical pain models rely on short-duration stimulus-evoked hind paw measurements even though chronic pain is usually a day and night experience. Pain is a debilitating condition that influences the sociability and the ability for voluntary tasks, but the relevant behavioral readouts for these aspects are mostly underrepresented in the literature. Moreover, we lack standardization in most behavioral paradigms. Important aspects are herewith the combination and duration of particular behavioral tasks and the effects of social environment. We aimed at thoroughly investigating stimulus-evoked and voluntary behavioral parameters in the Complete Freund's Adjuvant model of unilateral hind paw inflammation in male mice. Moreover, we analyzed the impact of different social housing conditions. We used a portfolio of classical response measurements, detailed gait analysis, using 2 different measuring systems (Dynamic weight bearing and CatWalk), as well as observer-independent voluntary wheel running and homecage monitoring in a longitudinal time frame. The impact of grouped or isolated housing was investigated in all behavioral paradigms. We observed that unilateral hind paw inflammation provoked changes in several behaviors. Among these were wheel running activity and different homecage activity parameters. Stimulus-evoked hypersensitivity lasted much longer than gait abnormalities and decreased voluntary wheel running activity. Similar effects were monitored in both social housing conditions. This is the first longitudinal study providing detailed insights into various voluntary behavioral parameters related to pain in a unilateral inflammatory model. Stimulus-evoked behavioral changes lasted longer than changes in voluntary behavioral parameters, and the social environment hardly affects these changes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...