Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brain Behav ; 14(6): e3511, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38894648

RESUMEN

INTRODUCTION: Major depressive disorder (MDD) is associated with dysfunctional reward processing, which involves functional circuitry of the habenula (Hb) and nucleus accumbens (NAc). Since ketamine elicits rapid antidepressant and antianhedonic effects in MDD, this study sought to investigate how serial ketamine infusion (SKI) treatment modulates static and dynamic functional connectivity (FC) in Hb and NAc functional networks. METHODS: MDD participants (n = 58, mean age = 40.7 years, female = 28) received four ketamine infusions (0.5 mg/kg) 2-3 times weekly. Resting-state functional magnetic resonance imaging (fMRI) scans and clinical assessments were collected at baseline and 24 h post-SKI. Static FC (sFC) and dynamic FC variability (dFCv) were calculated from left and right Hb and NAc seeds to all other brain regions. Changes in FC pre-to-post SKI, and correlations with changes with mood and anhedonia were examined. Comparisons of FC between patients and healthy controls (HC) at baseline (n = 55, mean age = 32.6, female = 31), and between HC assessed twice (n = 16) were conducted as follow-up analyses. RESULTS: Following SKI, significant increases in left Hb-bilateral visual cortex FC, decreases in left Hb-left inferior parietal cortex FC, and decreases in left NAc-right cerebellum FC occurred. Decreased dFCv between left Hb and right precuneus and visual cortex, and decreased dFCv between right NAc and right visual cortex both significantly correlated with improvements in mood ratings. Decreased FC between left Hb and bilateral visual/parietal cortices as well as increased FC between left NAc and right visual/parietal cortices both significantly correlated with improvements in anhedonia. No differences were observed between HC at baseline or over time. CONCLUSION: Subanesthetic ketamine modulates functional pathways linking the Hb and NAc with visual, parietal, and cerebellar regions in MDD. Overlapping effects between Hb and NAc functional systems were associated with ketamine's therapeutic response.


Asunto(s)
Trastorno Depresivo Mayor , Habénula , Ketamina , Imagen por Resonancia Magnética , Núcleo Accumbens , Humanos , Ketamina/farmacología , Ketamina/administración & dosificación , Masculino , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Depresivo Mayor/fisiopatología , Trastorno Depresivo Mayor/diagnóstico por imagen , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/diagnóstico por imagen , Núcleo Accumbens/fisiopatología , Adulto , Femenino , Habénula/efectos de los fármacos , Habénula/fisiopatología , Habénula/diagnóstico por imagen , Persona de Mediana Edad , Antidepresivos/farmacología , Antidepresivos/administración & dosificación , Anhedonia/efectos de los fármacos , Anhedonia/fisiología
2.
medRxiv ; 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38106178

RESUMEN

Dysfunctional reward processing in major depressive disorder (MDD) involves functional circuitry of the habenula (Hb) and nucleus accumbens (NAc). Ketamine elicits rapid antidepressant and alleviates anhedonia in MDD. To clarify how ketamine perturbs reward circuitry in MDD, we examined how serial ketamine infusions (SKI) modulate static and dynamic functional connectivity (FC) in Hb and NAc networks. MDD participants (n=58, mean age=40.7 years, female=28) received four ketamine infusions (0.5mg/kg) 2-3 times weekly. Resting-state fMRI scans and clinical assessments were collected at baseline and 24 hours post-SKI completion. Static FC (sFC) and dynamic FC variability (dFCv) were calculated from left and right Hb and NAc seeds to all other brain regions. Paired t-tests examined changes in FC pre-to-post SKI, and correlations were used to determine relationships between FC changes with mood and anhedonia. Following SKI, significant increases in left Hb-bilateral visual cortex FC, decreases in left Hb-left inferior parietal cortex FC, and decreases in left NAc-right cerebellum FC occurred. Decreased dFCv between left Hb and right precuneus and visual cortex, and decreased dFCv between right NAc and right visual cortex both significantly correlated with improvements in Hamilton Depression Rating Scale. Decreased FC between left Hb and bilateral visual/parietal cortices as well as increased FC between left NAc and right visual/parietal cortices both significantly correlated with improvements in anhedonia. Subanesthetic ketamine modulates functional pathways linking the Hb and NAc with visual, parietal, and cerebellar regions. Overlapping effects between Hb and NAc functional systems were associated with ketamine's therapeutic response.

3.
Front Psychiatry ; 14: 1227879, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37876623

RESUMEN

Introduction: Subanesthetic ketamine is a rapidly acting antidepressant that has also been found to improve neurocognitive performance in adult patients with treatment resistant depression (TRD). Provisional evidence suggests that ketamine may induce change in hippocampal volume and that larger pre-treatment volumes might be related to positive clinical outcomes. Here, we examine the effects of serial ketamine treatment on hippocampal subfield volumes and relationships between pre-treatment subfield volumes and changes in depressive symptoms and neurocognitive performance. Methods: Patients with TRD (N = 66; 31M/35F; age = 39.5 ± 11.1 years) received four ketamine infusions (0.5 mg/kg) over 2 weeks. Structural MRI scans, the National Institutes of Health Toolbox (NIHT) Cognition Battery, and Hamilton Depression Rating Scale (HDRS) were collected at baseline, 24 h after the first and fourth ketamine infusion, and 5 weeks post-treatment. The same data was collected for 32 age and sex matched healthy controls (HC; 17M/15F; age = 35.03 ± 12.2 years) at one timepoint. Subfield (CA1/CA3/CA4/subiculum/molecular layer/GC-ML-DG) volumes corrected for whole hippocampal volume were compared across time, between treatment remitters/non-remitters, and patients and HCs using linear regression models. Relationships between pre-treatment subfield volumes and clinical and cognitive outcomes were also tested. All analyses included Bonferroni correction. Results: Patients had smaller pre-treatment left CA4 (p = 0.004) and GC.ML.DG (p = 0.004) volumes compared to HC, but subfield volumes remained stable following ketamine treatment (all p > 0.05). Pre-treatment or change in hippocampal subfield volumes over time showed no variation by remission status nor correlated with depressive symptoms (p > 0.05). Pre-treatment left CA4 was negatively correlated with improved processing speed after single (p = 0.0003) and serial ketamine infusion (p = 0.005). Left GC.ML.DG also negatively correlated with improved processing speed after single infusion (p = 0.001). Right pre-treatment CA3 positively correlated with changes in list sorting working memory at follow-up (p = 0.0007). Discussion: These results provide new evidence to suggest that hippocampal subfield volumes at baseline may present a biomarker for neurocognitive improvement following ketamine treatment in TRD. In contrast, pre-treatment subfield volumes and changes in subfield volumes showed negligible relationships with ketamine-related improvements in depressive symptoms.

4.
Front Psychiatry ; 14: 1195763, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37457774

RESUMEN

Background: Total sleep deprivation (TSD) transiently reverses depressive symptoms in a majority of patients with depression. How TSD modulates diffusion tensor imaging (DTI) measures of white matter (WM) microstructure, which may be linked with TSD's rapid antidepressant effects, remains uncharacterized. Methods: Patients with depression (N = 48, mean age = 33, 26 women) completed diffusion-weighted imaging and Hamilton Depression Rating (HDRS) and rumination scales before and after >24 h of TSD. Healthy controls (HC) (N = 53, 23 women) completed the same assessments at baseline, and after receiving TSD in a subset of HCs (N = 15). Tract based spatial statistics (TBSS) investigated voxelwise changes in fractional anisotropy (FA) across major WM pathways pre-to-post TSD in patients and HCs and between patients and HCs at baseline. Post hoc analyses tested for TSD effects for other diffusion metrics, and the relationships between change in diffusion measures with change in mood and rumination symptoms. Results: Significant improvements in mood and rumination occurred in patients with depression (both p < 0.001), but not in HCs following TSD. Patients showed significant (p < 0.05, corrected) decreases in FA values in multiple WM tracts, including the body of the corpus callosum and anterior corona radiata post-TSD. Significant voxel-level changes in FA were not observed in HCs who received TSD (p > 0.05). However, differential effects of TSD between HCs and patients were found in the superior corona radiata, frontal WM and the posterior thalamic radiation (p < 0.05, corrected). A significant (p < 0.05) association between change in FA and axial diffusivity within the right superior corona radiata and improvement in rumination was found post-TSD in patients. Conclusion: Total sleep deprivation leads to rapid microstructural changes in WM pathways in patients with depression that are distinct from WM changes associated with TSD observed in HCs. WM tracts including the superior corona radiata and posterior thalamic radiation could be potential biomarkers of the rapid therapeutic effects of TSD. Changes in superior corona radiata FA, in particular, may relate to improvements in maladaptive rumination.

5.
J Affect Disord ; 333: 161-171, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37060953

RESUMEN

INTRODUCTION: Ketamine treatment prompts a rapid antidepressant response in treatment-resistant depression (TRD). We performed an exploratory investigation of how ketamine treatment in TRD affects different cognitive domains and relates to antidepressant response. METHODS: Patients with TRD (N = 66; 30 M/35F; age = 39.5 ± 11.1 years) received four ketamine infusions (0.5 mg/kg). Neurocognitive function and depressive symptoms were assessed at baseline, 24 h after the first and fourth ketamine infusion, and 5 weeks following end of treatment. Mixed effect models tested for changes in seven neurocognitive domains and antidepressant response, with post-hoc pairwise comparisons between timepoints, including follow-up. Relationships between change in neurocognitive function and antidepressant response over the course of treatment were tested with Pearson's correlation and mediation analyses. Associations between baseline neurocognitive performance and antidepressant response were tested with Pearson's correlation. RESULTS: Significant improvements in inhibition, working memory, processing speed, and overall fluid cognition were observed after the first and fourth ketamine infusion. Improvements in processing speed and overall fluid cognition persisted through follow-up. Significant improvements in depressive symptoms reverted towards baseline at follow-up. Baseline working memory and change in inhibition were moderately correlated with antidepressant response, however, improvements in neurocognitive performance were statistically independent from antidepressant response. CONCLUSION: Antidepressant ketamine leads to improved neurocognitive function, which persist for at least 5 weeks. Neurocognitive improvements observed appear independent of antidepressant response, suggesting ketamine may target overlapping but distinct functional brain systems. Limitations Research investigating repeated serial ketamine treatments is important to determine cognitive safety. This study is a naturalistic design and does not include placebo.


Asunto(s)
Trastorno Depresivo Resistente al Tratamiento , Ketamina , Adulto , Humanos , Persona de Mediana Edad , Antidepresivos/efectos adversos , Depresión , Trastorno Depresivo Resistente al Tratamiento/tratamiento farmacológico , Infusiones Intravenosas , Ketamina/efectos adversos , Resultado del Tratamiento
6.
Artículo en Inglés | MEDLINE | ID: mdl-36775711

RESUMEN

Major depressive disorder is a highly prevalent psychiatric disorder. Despite an extensive range of treatment options, about a third of patients still struggle to respond to available therapies. In the last 20 years, ketamine has gained considerable attention in the psychiatric field as a promising treatment of depression, particularly in patients who are treatment resistant or at high risk for suicide. At a subanesthetic dose, ketamine produces a rapid and pronounced reduction in depressive symptoms and suicidal ideation, and serial treatment appears to produce a greater and more sustained therapeutic response. However, the mechanism driving ketamine's antidepressant effects is not yet well understood. Biomarker discovery may advance knowledge of ketamine's antidepressant action, which could in turn translate to more personalized and effective treatment strategies. At the brain systems level, neuroimaging can be used to identify functional pathways and networks contributing to ketamine's therapeutic effects by studying how it alters brain structure, function, connectivity, and metabolism. In this review, we summarize and appraise recent work in this area, including 51 articles that use resting-state and task-based functional magnetic resonance imaging, arterial spin labeling, positron emission tomography, structural magnetic resonance imaging, diffusion magnetic resonance imaging, or magnetic resonance spectroscopy to study brain and clinical changes 24 hours or longer after ketamine treatment in populations with unipolar or bipolar depression. Though individual studies have included relatively small samples, used different methodological approaches, and reported disparate regional findings, converging evidence supports that ketamine leads to neuroplasticity in structural and functional brain networks that contribute to or are relevant to its antidepressant effects.


Asunto(s)
Trastorno Depresivo Mayor , Ketamina , Humanos , Ketamina/farmacología , Ketamina/uso terapéutico , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Depresivo Mayor/metabolismo , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Neuroimagen , Biomarcadores
7.
Hum Brain Mapp ; 44(6): 2395-2406, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36715291

RESUMEN

Ketamine produces fast-acting antidepressant effects in treatment resistant depression (TRD). Though prior studies report ketamine-related changes in brain activity in TRD, understanding of ketamine's effect on white matter (WM) microstructure remains limited. We thus sought to examine WM neuroplasticity and associated clinical improvements following serial ketamine infusion (SKI) in TRD. TRD patients (N = 57, 49.12% female, mean age: 39.9) received four intravenous ketamine infusions (0.5 mg/kg) 2-3 days apart. Diffusion-weighted scans and clinical assessments (Hamilton Depression Rating Scale [HDRS-17]; Snaith Hamilton Pleasure Scale [SHAPS]) were collected at baseline and 24-h after SKI. WM measures including the neurite density index (NDI) and orientation dispersion index (ODI) from the neurite orientation dispersion and density imaging (NODDI) model, and fractional anisotropy (FA) from the diffusion tensor model were compared voxelwise pre- to post-SKI after using Tract-Based Spatial Statistics workflows to align WM tracts across subjects/time. Correlations between change in WM metrics and clinical measures were subsequently assessed. Following SKI, patients showed significant improvements in HDRS-17 (p-value = 1.8 E-17) and SHAPS (p-value = 1.97 E-10). NDI significantly decreased in occipitotemporal WM pathways (p < .05, FWER/TFCE corrected). ΔSHAPS significantly correlated with ΔNDI in the left internal capsule and left superior longitudinal fasciculus (r = -0.614, p-value = 6.24E-09). No significant changes in ODI or FA were observed. SKI leads to significant changes in the microstructural features of neurites within occipitotemporal tracts, and changes in neurite density within tracts connecting the basal ganglia, thalamus, and cortex relate to improvements in anhedonia. NODDI may be more sensitive for detecting ketamine-induced WM changes than DTI.


Asunto(s)
Trastorno Depresivo Resistente al Tratamiento , Ketamina , Sustancia Blanca , Humanos , Femenino , Adulto , Masculino , Sustancia Blanca/diagnóstico por imagen , Ketamina/uso terapéutico , Imagen de Difusión Tensora/métodos , Trastorno Depresivo Resistente al Tratamiento/diagnóstico por imagen , Trastorno Depresivo Resistente al Tratamiento/tratamiento farmacológico , Neuritas , Encéfalo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...