Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Dev Cell ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38663399

RESUMEN

Dynamin assembles as a helical polymer at the neck of budding endocytic vesicles, constricting the underlying membrane as it progresses through the GTPase cycle to sever vesicles from the plasma membrane. Although atomic models of the dynamin helical polymer bound to guanosine triphosphate (GTP) analogs define earlier stages of membrane constriction, there are no atomic models of the assembled state post-GTP hydrolysis. Here, we used cryo-EM methods to determine atomic structures of the dynamin helical polymer assembled on lipid tubules, akin to necks of budding endocytic vesicles, in a guanosine diphosphate (GDP)-bound, super-constricted state. In this state, dynamin is assembled as a 2-start helix with an inner lumen of 3.4 nm, primed for spontaneous fission. Additionally, by cryo-electron tomography, we trapped dynamin helical assemblies within HeLa cells using the GTPase-defective dynamin K44A mutant and observed diverse dynamin helices, demonstrating that dynamin can accommodate a range of assembled complexes in cells that likely precede membrane fission.

3.
J Cell Biol ; 223(4)2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38353656

RESUMEN

The ability to dynamically assemble contractile networks is required throughout cell physiology, yet direct biophysical mechanisms regulating non-muscle myosin 2 filament assembly in living cells are lacking. Here, we use a suite of dynamic, quantitative imaging approaches to identify deterministic factors that drive myosin filament appearance and amplification. We find that actin dynamics regulate myosin assembly, but that the static actin architecture plays a less clear role. Instead, remodeling of actin networks modulates the local myosin monomer levels and facilitates assembly through myosin:myosin-driven interactions. Using optogenetically controlled myosin, we demonstrate that locally concentrating myosin is sufficient to both form filaments and jump-start filament amplification and partitioning. By counting myosin monomers within filaments, we demonstrate a myosin-facilitated assembly process that establishes filament stacks prior to partitioning into clusters that feed higher-order networks. Together, these findings establish the biophysical mechanisms regulating the assembly of non-muscle contractile structures that are ubiquitous throughout cell biology.


Asunto(s)
Citoesqueleto de Actina , Actinas , Miosina Tipo II , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animales , Ratones , Fibroblastos , Humanos , Células HEK293 , Miosina Tipo II/metabolismo
4.
Nat Methods ; 20(12): 1874-1876, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37932396
6.
bioRxiv ; 2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37162845

RESUMEN

The ability to dynamically assemble contractile networks is required throughout cell physiology, yet the biophysical mechanisms regulating non-muscle myosin 2 filament assembly in living cells are lacking. Here we use a suite of dynamic, quantitative imaging approaches to identify deterministic factors that drive myosin filament appearance and amplification. We find that actin dynamics regulate myosin assembly, but that the actin architecture plays a minimal direct role. Instead, remodeling of actin networks modulates the local myosin monomer levels and facilitates assembly through myosin:myosin driven interactions. Using optogenetically controlled myosin, we demonstrate that locally concentrating myosin is sufficient to both form filaments and jump-start filament amplification and partitioning. By counting myosin monomers within filaments, we demonstrate a myosin-facilitated assembly process that establishes sub-resolution filament stacks prior to partitioning into clusters that feed higher-order networks. Together these findings establish the biophysical mechanisms regulating the assembly of non-muscle contractile structures that are ubiquitous throughout cell biology.

7.
Nat Commun ; 14(1): 732, 2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36759616

RESUMEN

Conformational changes in endocytic proteins are regulators of clathrin-mediated endocytosis. Three clathrin heavy chains associated with clathrin light chains (CLC) assemble into triskelia that link into a geometric lattice that curves to drive endocytosis. Structural changes in CLC have been shown to regulate triskelia assembly in solution, yet the nature of these changes, and their effects on lattice growth, curvature, and endocytosis in cells are unknown. Here, we develop a new correlative fluorescence resonance energy transfer (FRET) and platinum replica electron microscopy method, named FRET-CLEM. With FRET-CLEM, we measure conformational changes in clathrin at thousands of individual morphologically distinct clathrin-coated structures. We discover that the N-terminus of CLC repositions away from the plasma membrane and triskelia vertex as coats curve. Preventing this conformational switch with chemical tools increases lattice sizes and inhibits endocytosis. Thus, a specific conformational switch in the light chain regulates lattice curvature and endocytosis in mammalian cells.


Asunto(s)
Cadenas Ligeras de Clatrina , Endocitosis , Animales , Cadenas Ligeras de Clatrina/metabolismo , Membrana Celular/metabolismo , Clatrina/metabolismo , Cadenas Pesadas de Clatrina/metabolismo , Mamíferos/metabolismo
8.
Prog Mol Biol Transl Sci ; 194: 159-177, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36631191

RESUMEN

The B cell receptor (BCR) interacts with foreign antigens to mediate B cell activation and secretion of antibodies. B cell activation begins with initiation of signaling pathways, such as NFAT, NF-κB, and MAPK, and endocytosis of the BCR-antigen complex. Many studies have investigated the signaling pathways associated with BCR activation, and this work has led to significant advances in drug therapies to treat cancer and autoimmune diseases that are linked to aberrant BCR signaling. Less is known, however, about the mechanisms of BCR endocytosis and the role endocytosis plays in B cell pathogenesis. This chapter will review key characteristics of the BCR, including a review of signaling pathways, and endocytic mechanisms associated with the activated BCR. We will also review recent studies investigating the role of BCR endocytosis disease pathogenesis.


Asunto(s)
Linfocitos B , Receptores de Antígenos de Linfocitos B , Humanos , Receptores de Antígenos de Linfocitos B/metabolismo , Linfocitos B/metabolismo , Endocitosis , Transducción de Señal , FN-kappa B/metabolismo
9.
Nat Biotechnol ; 41(9): 1307-1319, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36702897

RESUMEN

The axial resolution of three-dimensional structured illumination microscopy (3D SIM) is limited to ∼300 nm. Here we present two distinct, complementary methods to improve axial resolution in 3D SIM with minimal or no modification to the optical system. We show that placing a mirror directly opposite the sample enables four-beam interference with higher spatial frequency content than 3D SIM illumination, offering near-isotropic imaging with ∼120-nm lateral and 160-nm axial resolution. We also developed a deep learning method achieving ∼120-nm isotropic resolution. This method can be combined with denoising to facilitate volumetric imaging spanning dozens of timepoints. We demonstrate the potential of these advances by imaging a variety of cellular samples, delineating the nanoscale distribution of vimentin and microtubule filaments, observing the relative positions of caveolar coat proteins and lysosomal markers and visualizing cytoskeletal dynamics within T cells in the early stages of immune synapse formation.


Asunto(s)
Imagenología Tridimensional , Iluminación , Microscopía Fluorescente/métodos , Imagenología Tridimensional/métodos , Citoesqueleto , Lisosomas
10.
Nat Rev Mol Cell Biol ; 24(1): 63-78, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35918535

RESUMEN

Curved membranes are key features of intracellular organelles, and their generation involves dynamic protein complexes. Here we describe the fundamental mechanisms such as the hydrophobic insertion, scaffolding and crowding mechanisms these proteins use to produce membrane curvatures and complex shapes required to form intracellular organelles and vesicular structures involved in endocytosis and secretion. For each mechanism, we discuss its cellular functions as well as the underlying physical principles and the specific membrane properties required for the mechanism to be feasible. We propose that the integration of individual mechanisms into a highly controlled, robust process of curvature generation often relies on the assembly of proteins into coats. How cells unify and organize the curvature-generating factors at the nanoscale is presented for three ubiquitous coats central for membrane trafficking in eukaryotes: clathrin-coated pits, caveolae, and COPI and COPII coats. The emerging theme is that these coats arrange and coordinate curvature-generating factors in time and space to dynamically shape membranes to accomplish membrane trafficking within cells.


Asunto(s)
Orgánulos , Proteínas , Membranas/metabolismo , Proteínas/metabolismo , Orgánulos/metabolismo , Membrana Celular/metabolismo , Endocitosis , Clatrina/metabolismo
11.
Nat Commun ; 13(1): 7234, 2022 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-36433988

RESUMEN

Caveolae are small coated plasma membrane invaginations with diverse functions. Caveolae undergo curvature changes. Yet, it is unclear which proteins regulate this process. To address this gap, we develop a correlative stimulated emission depletion (STED) fluorescence and platinum replica electron microscopy imaging (CLEM) method to image proteins at single caveolae. Caveolins and cavins are found at all caveolae, independent of curvature. EHD2 is detected at both low and highly curved caveolae. Pacsin2 associates with low curved caveolae and EHBP1 with mostly highly curved caveolae. Dynamin is absent from caveolae. Cells lacking dynamin show no substantial changes to caveolae, suggesting that dynamin is not directly involved in caveolae curvature. We propose a model where caveolins, cavins, and EHD2 assemble as a cohesive structural unit regulated by intermittent associations with pacsin2 and EHBP1. These coats can flatten and curve to enable lipid traffic, signaling, and changes to the surface area of the cell.


Asunto(s)
Caveolas , Caveolinas , Caveolas/metabolismo , Membrana Celular/metabolismo , Caveolinas/metabolismo , Endocitosis , Dinaminas/metabolismo , Proteínas/metabolismo
12.
Methods Mol Biol ; 2473: 167-180, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35819766

RESUMEN

The three-dimensional structures of organelles can be visualized at high resolutions using electron microscopy and tomography. Combining genetically encoded tags with tomography enables the specific targeting and detection of identified proteins inside cells. Here, we describe a method for attaching metal-binding gold nanoparticles to proteins genetically tagged with hexa-histidine sequences. We apply this strategy to visualize the position of intracellular proteins on single organelles in unroofed cells with platinum replica electron microscopy at the nanoscale in three dimensions. We have found that this combined method can label and localize proteins with isotropic high precision to generate quantitative maps of protein positions in and around trafficking organelles at the inner plasma membrane of mammalian cells.


Asunto(s)
Oro , Nanopartículas del Metal , Animales , Mamíferos , Microscopía Electrónica , Orgánulos , Platino (Metal)
13.
Mol Metab ; 63: 101541, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35835371

RESUMEN

OBJECTIVES: Pancreatic beta cells secrete insulin postprandially and during fasting to maintain glucose homeostasis. Although glucose-stimulated insulin secretion (GSIS) has been extensively studied, much less is known about basal insulin secretion. Here, we performed a genome-wide CRISPR/Cas9 knockout screen to identify novel regulators of insulin secretion. METHODS: To identify genes that cell autonomously regulate insulin secretion, we engineered a Cas9-expressing MIN6 subclone that permits irreversible fluorescence labeling of exocytic insulin granules. Using a fluorescence-activated cell sorting assay of exocytosis in low glucose and high glucose conditions in individual cells, we performed a genome-wide CRISPR/Cas9 knockout screen. RESULTS: We identified several members of the COMMD family, a conserved family of proteins with central roles in intracellular membrane trafficking, as positive regulators of basal insulin secretion, but not GSIS. Mechanistically, we show that the Commander complex promotes insulin granules docking in basal state. This is mediated, at least in part, by its function in ITGB1 recycling. Defective ITGB1 recycling reduces its membrane distribution, the number of focal adhesions and cortical ELKS-containing complexes. CONCLUSIONS: We demonstrated a previously unknown function of the Commander complex in basal insulin secretion. We showed that by ITGB1 recycling, Commander complex increases cortical adhesions, which enhances the assembly of the ELKS-containing complexes. The resulting increase in the number of insulin granules near the plasma membrane strengthens basal insulin secretion.


Asunto(s)
Células Secretoras de Insulina , Exocitosis , Glucosa/metabolismo , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo
14.
iScience ; 25(2): 103809, 2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35198874

RESUMEN

Clathrin-mediated endocytosis, the most prominent endocytic mode, is thought to be generated primarily from relatively flat patches of the plasma membrane. By employing conventional and platinum replica electron microscopy and super-resolution STED microscopy in neuroendocrine chromaffin cells, we found that large Ω-shaped or dome-shaped plasma membrane invaginations, previously thought of as the precursor of bulk endocytosis, are primary sites for clathrin-coated pit generation after depolarization. Clathrin-coated pits are more densely packed at invaginations rather than flat membranes, suggesting that invaginations are preferred sites for clathrin-coated pit formation, likely because their positive curvature facilitates coated-pit formation. Thus, clathrin-mediated endocytosis closely collaborates with bulk endocytosis to enhance endocytic capacity in active secretory cells. This direct collaboration between two classically independent endocytic pathways is of broad importance given the central role of both clathrin-mediated endocytosis and bulk endocytosis in neurons, endocrine cells, immune cells, and many other cell types throughout the body.

16.
Nat Commun ; 13(1): 905, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35173166

RESUMEN

The crosstalk between growth factor and adhesion receptors is key for cell growth and migration. In pathological settings, these receptors are drivers of cancer. Yet, how growth and adhesion signals are spatially organized and integrated is poorly understood. Here we use quantitative fluorescence and electron microscopy to reveal a mechanism where flat clathrin lattices partition and activate growth factor signals via a coordinated response that involves crosstalk between epidermal growth factor receptor (EGFR) and the adhesion receptor ß5-integrin. We show that ligand-activated EGFR, Grb2, Src, and ß5-integrin are captured by clathrin coated-structures at the plasma membrane. Clathrin structures dramatically grow in response to EGF into large flat plaques and provide a signaling platform that link EGFR and ß5-integrin through Src-mediated phosphorylation. Disrupting this EGFR/Src/ß5-integrin axis prevents both clathrin plaque growth and dampens receptor signaling. Our study reveals a reciprocal regulation between clathrin lattices and two different receptor systems to coordinate and enhance signaling. These findings have broad implications for the regulation of growth factor signaling, adhesion, and endocytosis.


Asunto(s)
Vesículas Cubiertas por Clatrina/metabolismo , Clatrina/química , Proteína Adaptadora GRB2/metabolismo , Cadenas beta de Integrinas/metabolismo , Adhesión Celular/fisiología , Línea Celular Tumoral , Membrana Celular/metabolismo , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Endocitosis , Receptores ErbB/metabolismo , Humanos , Microscopía Electrónica , Transducción de Señal/fisiología , Familia-src Quinasas/metabolismo
17.
Cell Rep ; 37(7): 110008, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34788623

RESUMEN

Clathrin-mediated endocytosis (CME) is critical for cellular signal transduction, receptor recycling, and membrane homeostasis in mammalian cells. Acute depletion of cholesterol disrupts CME, motivating analysis of CME dynamics in the context of human disorders of cholesterol metabolism. We report that inhibition of post-squalene cholesterol biosynthesis impairs CME. Imaging of membrane bending dynamics and the CME pit ultrastructure reveals prolonged clathrin pit lifetimes and shallow clathrin-coated structures, suggesting progressive impairment of curvature generation correlates with diminishing sterol abundance. Sterol structural requirements for efficient CME include 3' polar head group and B-ring conformation, resembling the sterol structural prerequisites for tight lipid packing and polarity. Furthermore, Smith-Lemli-Opitz fibroblasts with low cholesterol abundance exhibit deficits in CME-mediated transferrin internalization. We conclude that sterols lower the energetic costs of membrane bending during pit formation and vesicular scission during CME and suggest that reduced CME activity may contribute to cellular phenotypes observed within disorders of cholesterol metabolism.


Asunto(s)
Vesículas Cubiertas por Clatrina/metabolismo , Endocitosis/fisiología , Esteroles/farmacología , Extensiones de la Superficie Celular/metabolismo , Extensiones de la Superficie Celular/fisiología , Colesterol/metabolismo , Clatrina/metabolismo , Fibroblastos/metabolismo , Células HEK293 , Humanos , Metabolismo de los Lípidos/fisiología , Lípidos/fisiología , Proteínas de la Membrana/metabolismo , Receptores de Transferrina/metabolismo , Esteroles/metabolismo
18.
Nat Commun ; 12(1): 3970, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-34172739

RESUMEN

Rab-GTPases and their interacting partners are key regulators of secretory vesicle trafficking, docking, and fusion to the plasma membrane in neurons and neuroendocrine cells. Where and how these proteins are positioned and organized with respect to the vesicle and plasma membrane are unknown. Here, we use correlative super-resolution light and platinum replica electron microscopy to map Rab-GTPases (Rab27a and Rab3a) and their effectors (Granuphilin-a, Rabphilin3a, and Rim2) at the nanoscale in 2D. Next, we apply a targetable genetically-encoded electron microscopy labeling method that uses histidine based affinity-tags and metal-binding gold-nanoparticles to determine the 3D axial location of these exocytic proteins and two SNARE proteins (Syntaxin1A and SNAP25) using electron tomography. Rab proteins are distributed across the entire surface and t-SNARE proteins at the base of docked vesicles. We propose that the circumferential distribution of Rabs and Rab-effectors could aid in the efficient transport, capture, docking, and rapid fusion of calcium-triggered exocytic vesicles in excitable cells.


Asunto(s)
Imagen Molecular/métodos , Células Neuroendocrinas/citología , Vesículas Secretoras/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Animales , Carbocianinas/química , Células Cultivadas , Exocitosis , Oro , Células HeLa , Humanos , Imagenología Tridimensional , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Nanopartículas del Metal/química , Microscopía/métodos , Células Neuroendocrinas/metabolismo , Células PC12 , Ratas , Proteínas SNARE/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteína Fluorescente Roja
19.
Dev Cell ; 56(8): 1131-1146.e3, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33823128

RESUMEN

Clathrin-mediated endocytosis is the primary pathway for receptor and cargo internalization in eukaryotic cells. It is characterized by a polyhedral clathrin lattice that coats budding membranes. The mechanism and control of lattice assembly, curvature, and vesicle formation at the plasma membrane has been a matter of long-standing debate. Here, we use platinum replica and cryoelectron microscopy and tomography to present a structural framework of the pathway. We determine the shape and size parameters common to clathrin-mediated endocytosis. We show that clathrin sites maintain a constant surface area during curvature across multiple cell lines. Flat clathrin is present in all cells and spontaneously curves into coated pits without additional energy sources or recruited factors. Finally, we attribute curvature generation to loosely connected and pentagon-containing flat lattices that can rapidly curve when a flattening force is released. Together, these data present a universal mechanistic model of clathrin-mediated endocytosis.


Asunto(s)
Membrana Celular/fisiología , Membrana Celular/ultraestructura , Clatrina/metabolismo , Adhesividad , Animales , Línea Celular , Colesterol/metabolismo , Microscopía por Crioelectrón , Humanos , Masculino , Ratones , Modelos Biológicos , Ratas
20.
J Gen Physiol ; 153(4)2021 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-33720306

RESUMEN

Spines are tiny nanoscale protrusions from dendrites of neurons. In the cortex and hippocampus, most of the excitatory postsynaptic sites reside in spines. The bulbous spine head is connected to the dendritic shaft by a thin membranous neck. Because the neck is narrow, spine heads are thought to function as biochemically independent signaling compartments. Thus, dynamic changes in the composition, distribution, mobility, conformations, and signaling properties of molecules contained within spines can account for much of the molecular basis of postsynaptic function and regulation. A major factor in controlling these changes is the diffusional properties of proteins within this small compartment. Advances in measurement techniques using fluorescence microscopy now make it possible to measure molecular diffusion within single dendritic spines directly. Here, we review the regulatory mechanisms of diffusion in spines by local intra-spine architecture and discuss their implications for neuronal signaling and synaptic plasticity.


Asunto(s)
Espinas Dendríticas , Neuronas , Difusión , Hipocampo , Plasticidad Neuronal , Sinapsis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...