Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(14): e2118558119, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35312340

RESUMEN

SignificanceThe Ice-Free Corridor (IFC) has long played a key role in hypotheses about the peopling of the Americas. Earlier assessments of its age suggested that the IFC was available for a Clovis-first migration, but subsequent developments now suggest a pre-Clovis occupation of the Americas that occurred before the opening of the IFC, thus supporting a Pacific coastal migration route instead. However, large uncertainties in existing ages from the IFC cannot preclude its availability as a route for the first migrations. Resolving this debate over migration route is important for addressing the questions of when and how the first Americans arrived. We report cosmogenic nuclide exposure ages that show that the final opening of the IFC occurred well after pre-Clovis occupation.


Asunto(s)
Arqueología , Américas , Humanos
2.
Proc Natl Acad Sci U S A ; 115(19): 4851-4856, 2018 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-29666256

RESUMEN

Widespread establishment of peatlands since the Last Glacial Maximum represents the activation of a globally important carbon sink, but the drivers of peat initiation are unclear. The role of climate in peat initiation is particularly poorly understood. We used a general circulation model to simulate local changes in climate during the initiation of 1,097 peatlands around the world. We find that peat initiation in deglaciated landscapes in both hemispheres was driven primarily by warming growing seasons, likely through enhanced plant productivity, rather than by any increase in effective precipitation. In Western Siberia, which remained ice-free throughout the last glacial period, the initiation of the world's largest peatland complex was globally unique in that it was triggered by an increase in effective precipitation that inhibited soil respiration and allowed wetland plant communities to establish. Peat initiation in the tropics was only weakly related to climate change, and appears to have been driven primarily by nonclimatic mechanisms such as waterlogging due to tectonic subsidence. Our findings shed light on the genesis and Holocene climate space of one of the world's most carbon-dense ecosystem types, with implications for understanding trajectories of ecological change under changing future climates.


Asunto(s)
Carbono/metabolismo , Calentamiento Global , Modelos Biológicos , Suelo , Humedales
3.
Nat Commun ; 9(1): 1634, 2018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-29691388

RESUMEN

The Younger Dryas (YD) cold reversal interrupts the warming climate of the deglaciation with global climatic impacts. The sudden cooling is typically linked to an abrupt slowdown of the Atlantic Meridional Overturning Circulation (AMOC) in response to meltwater discharges from ice sheets. However, inconsistencies regarding the YD-response of European summer temperatures have cast doubt whether the concept provides a sufficient explanation. Here we present results from a high-resolution global climate simulation together with a new July temperature compilation based on plant indicator species and show that European summers remain warm during the YD. Our climate simulation provides robust physical evidence that atmospheric blocking of cold westerly winds over Fennoscandia is a key mechanism counteracting the cooling impact of an AMOC-slowdown during summer. Despite the persistence of short warm summers, the YD is dominated by a shift to a continental climate with extreme winter to spring cooling and short growing seasons.

4.
Proc Natl Acad Sci U S A ; 114(23): 5952-5957, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28512225

RESUMEN

We present a revised and extended high Arctic air temperature reconstruction from a single proxy that spans the past ∼12,000 y (up to 2009 CE). Our reconstruction from the Agassiz ice cap (Ellesmere Island, Canada) indicates an earlier and warmer Holocene thermal maximum with early Holocene temperatures that are 4-5 °C warmer compared with a previous reconstruction, and regularly exceed contemporary values for a period of ∼3,000 y. Our results show that air temperatures in this region are now at their warmest in the past 6,800-7,800 y, and that the recent rate of temperature change is unprecedented over the entire Holocene. The warmer early Holocene inferred from the Agassiz ice core leads to an estimated ∼1 km of ice thinning in northwest Greenland during the early Holocene using the Camp Century ice core. Ice modeling results show that this large thinning is consistent with our air temperature reconstruction. The modeling results also demonstrate the broader significance of the enhanced warming, with a retreat of the northern ice margin behind its present position in the mid Holocene and a ∼25% increase in total Greenland ice sheet mass loss (∼1.4 m sea-level equivalent) during the last deglaciation, both of which have implications for interpreting geodetic measurements of land uplift and gravity changes in northern Greenland.

6.
Nature ; 435(7042): 662-5, 2005 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-15931219

RESUMEN

The last deglaciation was abruptly interrupted by a millennial-scale reversal to glacial conditions, the Younger Dryas cold event. This cold interval has been connected to a decrease in the rate of North Atlantic Deep Water formation and to a resulting weakening of the meridional overturning circulation owing to surface water freshening. In contrast, an earlier input of fresh water (meltwater pulse 1a), whose origin is disputed, apparently did not lead to a reduction of the meridional overturning circulation. Here we analyse an ensemble of simulations of the drainage chronology of the North American ice sheet in order to identify the geographical release points of freshwater forcing during deglaciation. According to the simulations with our calibrated glacial systems model, the North American ice sheet contributed about half the fresh water of meltwater pulse 1a. During the onset of the Younger Dryas, we find that the largest combined meltwater/iceberg discharge was directed into the Arctic Ocean. Given that the only drainage outlet from the Arctic Ocean was via the Fram Strait into the Greenland-Iceland-Norwegian seas, where North Atlantic Deep Water is formed today, we hypothesize that it was this Arctic freshwater flux that triggered the Younger Dryas cold reversal.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...