Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Free Radic Biol Med ; 216: 24-32, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38460742

RESUMEN

Reactive oxygen species (ROS) produced by NADPH oxidases (NOX, a key source of ROS in vascular cells) are involved in the regulation of vascular tone, but this has been explored mainly for adult organisms. Importantly, the mechanisms of vascular tone regulation differ significantly in early postnatal ontogenesis and adulthood, while the vasomotor role of ROS in immature systemic arteries is poorly understood. We tested the hypothesis that the functional contribution of NADPH oxidase-derived ROS to the regulation of peripheral arterial tone is higher in the early postnatal period than in adulthood. We studied saphenous arteries from 10- to 15-day-old ("young") and 3- to 4-month-old ("adult") male rats using lucigenin-enhanced chemiluminescence, quantitative PCR, Western blotting, and isometric myography. We demonstrated that both basal and NADPH-stimulated superoxide anion radical (O2•-) production was significantly higher in the arteries from young in comparison to adult rats. Importantly, pan-inhibitor of NADPH oxidase VAS2870 (10 µM) reduced NADPH-induced O2•- production in arteries of young rats. Saphenous arteries of both young and adult rats demonstrated high levels of Nox2 and Nox4 mRNAs, while Nox1 and Nox3 mRNAs were not detected. The protein contents of NOX2 and NOX4 were significantly higher in arterial tissue of young compared to adult animals. Moreover, VAS2870 (10 µM) had no effect on methoxamine-induced contractile responses of adult arteries but decreased them significantly in young arteries; such effect of VAS2870 persisted after removal of the endothelium. Finally, NOX2 inhibitor GSK2795039 (10 µM), but not NOX1/4 inhibitor GKT137831 (10 µM) weakened methoxamine-induced contractile responses of arteries from young rats. Thus, ROS produced by NOX2 have a pronounced contractile influence in saphenous artery smooth muscle cells of young, but not adult rats, which is associated with the increased vascular content of NOX2 protein at this age.


Asunto(s)
Arterias , NADPH Oxidasas , Ratas , Masculino , Animales , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , NADP , Metoxamina , Arterias/fisiología , NADPH Oxidasa 1/genética , NADPH Oxidasa 4/genética , NADPH Oxidasa 4/metabolismo , Superóxidos/metabolismo
2.
Front Physiol ; 14: 1176748, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37168231

RESUMEN

The study of the mechanisms of regulation of vascular tone is an urgent task of modern science, since diseases of the cardiovascular system remain the main cause of reduction in the quality of life and mortality of the population. Myography (isometric and isobaric) of isolated blood vessels is one of the most physiologically relevant approaches to study the function of cells in the vessel wall. On the one hand, cell-cell interactions as well as mechanical stretch of the vessel wall remain preserved in myography studies, in contrast to studies on isolated cells, e.g., cell culture. On the other hand, in vitro studies in isolated vessels allow control of numerous parameters that are difficult to control in vivo. The aim of this review was to 1) discuss the specifics of experimental design and interpretation of data obtained by myography and 2) highlight the importance of the combined use of myography with various complementary techniques necessary for a deep understanding of vascular physiology.

3.
Front Physiol ; 13: 1003073, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36388097

RESUMEN

Introduction: Functional tests and training regimens intensity-controlled by an individual are used in sport practice, clinical rehabilitation, and space medicine. The model of voluntary wheel running in rats can be used to explore molecular mechanisms of such training regimens in humans. Respiratory and locomotor muscles demonstrate diverse adaptations to treadmill exercise, but the effects of voluntary exercise training on these muscle types have not been compared yet. Therefore, this work aimed at the effects of voluntary ET on rat triceps brachii and diaphragm muscles with special attention to reactive oxygen species, which regulate muscle plasticity during exercise. Methods: Male Wistar rats were distributed into exercise trained (ET) and sedentary (Sed) groups. ET group had free access to running wheels, running activity was continuously recorded and analyzed using the original hardware/software complex. After 8 weeks, muscle protein contents were studied using Western blotting. Results: ET rats had increased heart ventricular weights but decreased visceral/epididymal fat weights and blood triglyceride level compared to Sed. The training did not change corticosterone, testosterone, and thyroid hormone levels, but decreased TBARS content in the blood. ET rats demonstrated higher contents of OXPHOS complexes in the triceps brachii muscle, but not in the diaphragm. The content of SOD2 increased, and the contents of NOX2 and SOD3 decreased in the triceps brachii muscle of ET rats, while there were no such changes in the diaphragm. Conclusion: Voluntary wheel running in rats is intensive enough to govern specific adaptations of muscle fibers in locomotor, but not respiratory muscle.

4.
Front Physiol ; 13: 895863, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35669582

RESUMEN

Aim: TASK-1 channels are established regulators of pulmonary artery tone but their contribution to the regulation of vascular tone in systemic arteries is poorly understood. We tested the hypothesis that TASK-1 channel functional impact differs among systemic vascular beds, that this is associated with differences in their expression and may increase with alkalization of the extracellular environment. Therefore, we evaluated the expression level of TASK-1 channels and their vasomotor role in mesenteric and renal arteries. Methods: Pulmonary, mesenteric and renal arteries from male Wistar rats were used for TASK-1 channel mRNA (qPCR) and protein content (Western blotting) measurements. The functional role of TASK-1 channels was studied by wire myography using the TASK-1 channel blocker AVE1231. In some experiments, the endothelium was removed with a rat whisker. Results: Expression levels of both mRNA and protein of the TASK-1 channel pore-forming subunit were highest in pulmonary arteries, lowest in mesenteric arteries and had an intermediate value in renal arteries. Blockade of TASK-1 channels by 1 µM AVE1231 increased U46619-induced contractile responses of pulmonary arteries but did not affect basal tone and contractile responses to methoxamine of mesenteric and renal arteries at physiological extracellular pH (pHo = 7.41). At alkaline extracellular pH = 7.75 (increase of NaHCO3 to 52 mM) AVE1231 evoked the development of basal tone and increased contractile responses to low concentrations of methoxamine in renal but not mesenteric arteries. This effect was independent of the endothelium. Conclusion: In the rat systemic circulation, TASK-1 channels are abundant in renal arteries and have an anticontractile function under conditions of extracellular alkalosis.

5.
Int J Mol Sci ; 23(11)2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35682667

RESUMEN

The activity of many vasomotor signaling pathways strongly depends on extracellular/intracellular pH. Nitric oxide (NO) is one of the most important vasodilators produced by the endothelium. In this review, we present evidence that in most vascular beds of mature mammalian organisms metabolic or respiratory acidosis increases functional endothelial NO-synthase (eNOS) activity, despite the observation that direct effects of low pH on eNOS enzymatic activity are inhibitory. This can be explained by the fact that acidosis increases the activity of signaling pathways that positively regulate eNOS activity. The role of NO in the regulation of vascular tone is greater in early postnatal ontogenesis compared to adulthood. Importantly, in early postnatal ontogenesis acidosis also augments functional eNOS activity and its contribution to the regulation of arterial contractility. Therefore, the effect of acidosis on total peripheral resistance in neonates may be stronger than in adults and can be one of the reasons for an undesirable decrease in blood pressure during neonatal asphyxia. The latter, however, should be proven in future studies.


Asunto(s)
Acidosis , Endotelio Vascular , Acidosis/metabolismo , Adulto , Animales , Presión Sanguínea , Endotelio Vascular/metabolismo , Humanos , Recién Nacido , Mamíferos/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Vasodilatadores/farmacología
6.
Curr Res Physiol ; 5: 8-15, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34984343

RESUMEN

BACKGROUND: Antenatal/early postnatal hypothyroidism weakens NO-mediated anticontractile influence of endothelium in coronary arteries of adult rats, but it remains unclear whether this occurs in other vascular regions. We hypothesized that developmental thyroid deficiency is followed by region-specific changes in the endothelial NO-pathway activity in systemic vasculature. To explore this, we estimated the effects of antenatal/early postnatal hypothyroidism on NO-pathway activity and its potential local control mechanisms in rat mesenteric and skeletal muscle (sural) arteries. METHODS: Dams were treated with 6-propyl-2-thiouracil (PTU) in drinking water (0.0007%) during pregnancy and 2 weeks postpartum; control (CON) females received PTU-free water. Adult offspring (10-12-weeks) arteries were studied by wire myography, qPCR, and Western blotting. RESULTS: Endothelium removal or inhibition of NO-synthase with L-NNA augmented contractile responses to α1-adrenoceptor agonist methoxamine. In PTU compared to CON group, these effects were stronger in sural arteries, but did not differ in mesenteric arteries. The responses of both arteries to NO-donor DEA/NO were similar in CON and PTU rats. mRNA contents of deiodinase 2 and thyroid hormone receptor α were similar in mesenteric arteries of two groups but were elevated in sural arteries of PTU group compared to CON. The abundance of eNOS protein was higher in sural arteries of PTU compared to CON rats. CONCLUSION: Antenatal/early postnatal hypothyroidism is followed by an increase in NO-mediated anticontractile influence in sural, but not in mesenteric arteries of adult animals. The diversity of hypothyroidism effects may be due to different alterations of local T3 synthesis/reception in different vascular beds.

7.
Int J Mol Sci ; 22(22)2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34830206

RESUMEN

Nitric oxide (NO) has been shown to stimulate differentiation and increase the survival of ganglionic sympathetic neurons. The proportion of neuronal NOS-immunoreactive sympathetic preganglionic neurons is particularly high in newborn rats and decreases with maturation. However, the role of NO in the development of vascular sympathetic innervation has never been studied before. We tested the hypothesis that intrauterine NO deficiency weakened the development of vascular sympathetic innervation and thereby changed the contractility of peripheral arteries and blood pressure level in two-week-old offspring. Pregnant rats consumed NOS inhibitor L-NAME (250 mg/L in drinking water) from gestational day 10 until delivery. Pups in the L-NAME group had a reduced body weight and blood level of NO metabolites at 1-2 postnatal days. Saphenous arteries from two-week-old L-NAME offspring demonstrated a lower density of sympathetic innervation, a smaller inner diameter, reduced maximal active force and decreased α-actin/ß-actin mRNA expression ratio compared to the controls. Importantly, pups in the L-NAME group exhibited decreased blood pressure levels before, but not after, ganglionic blockade with chlorisondamine. In conclusion, intrauterine L-NAME exposure is followed by the impaired development of the sympathetic nervous system in early postnatal life, which is accompanied by the structural and functional remodeling of arterial blood vessels.


Asunto(s)
Arterias/inervación , Inhibidores Enzimáticos/farmacología , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico Sintasa/antagonistas & inhibidores , Sistema Nervioso Simpático/embriología , Sistema Nervioso Simpático/crecimiento & desarrollo , Remodelación Vascular/efectos de los fármacos , Animales , Animales Recién Nacidos , Arterias/metabolismo , Presión Sanguínea/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Femenino , Edad Gestacional , Masculino , Modelos Animales , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa/metabolismo , Embarazo , Ratas , Ratas Wistar , Sistema Nervioso Simpático/metabolismo
8.
Front Physiol ; 12: 726354, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34594239

RESUMEN

Aim: Hyperthyroidism is associated with a decreased peripheral vascular resistance, which could be caused by the vasodilator genomic or non-genomic effects of thyroid hormones (TH). Non-genomic, or acute, effects develop within several minutes and involve a wide tissue-specific spectrum of molecular pathways poorly studied in vasculature. We aimed to investigate the mechanisms of acute effects of TH on rat skeletal muscle arteries. Methods: Sural arteries from male Wistar rats were used for isometric force recording (wire myography) and phosphorylated protein content measurement (Western blotting). Results: Both triiodothyronine (T3) and thyroxine (T4) reduced contractile response of sural arteries to α1-adrenoceptor agonist methoxamine. The effect of T4 was more prominent than T3 and not affected by iopanoic acid, an inhibitor of deiodinase 2. Endothelium denudation abolished the effect of T3, but not T4. Integrin αvß3 inhibitor tetrac abolished the effect of T4 in endothelium-denuded arteries. T4 weakened methoxamine-induced elevation of phospho-MLC2 (Ser19) content in arterial samples. The effect of T4 in endothelium-denuded arteries was abolished by inhibiting ERK1/2 activation with U0126 as well as by ILK inhibitor Cpd22 but persisted in the presence of Src- or Rho-kinase inhibitors (PP2 and Y27632, respectively). Conclusion: Acute non-genomic relaxation of sural arteries induced by T3 is endothelium-dependent and that induced by T4 is endothelium-independent. The effect of T4 on α1-adrenergic contraction is stronger compared to T3 and involves the suppression of extracellular matrix signaling via integrin αvß3, ERK1/2 and ILK with subsequent decrease of MLC2 (Ser19) phosphorylation.

9.
Int J Mol Sci ; 22(15)2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34360769

RESUMEN

Nitric oxide (NO) deficiency during pregnancy is a key reason for preeclampsia development. Besides its important vasomotor role, NO is shown to regulate the cell transcriptome. However, the role of NO in transcriptional regulation of developing smooth muscle has never been studied before. We hypothesized that in early ontogeny, NO is important for the regulation of arterial smooth muscle-specific genes expression. Pregnant rats consumed NO-synthase inhibitor L-NAME (500 mg/L in drinking water) from gestational day 10 till delivery, which led to an increase in blood pressure, a key manifestation of preeclampsia. L-NAME reduced blood concentrations of NO metabolites in dams and their newborn pups, as well as relaxations of pup aortic rings to acetylcholine. Using qPCR, we demonstrated reduced abundances of the smooth muscle-specific myosin heavy chain isoform, α-actin, SM22α, and L-type Ca2+-channel mRNAs in the aorta of newborn pups from the L-NAME group compared to control pups. To conclude, the intrauterine NO deficiency weakens gene expression specific for a contractile phenotype of arterial smooth muscle in newborn offspring.


Asunto(s)
Diferenciación Celular , Músculo Liso Vascular/metabolismo , Óxido Nítrico/deficiencia , Complicaciones del Embarazo/metabolismo , Útero/metabolismo , Animales , Animales Recién Nacidos , Femenino , Regulación de la Expresión Génica , Proteínas Musculares/biosíntesis , Músculo Liso Vascular/patología , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico/metabolismo , Embarazo , Complicaciones del Embarazo/inducido químicamente , Complicaciones del Embarazo/patología , Ratas , Ratas Wistar , Útero/patología
10.
Int J Mol Sci ; 22(11)2021 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-34204888

RESUMEN

Previously, the abundance of p42/44 and p38 MAPK proteins had been shown to be higher in arteries of 1- to 2-week-old compared to 2- to 3-month-old rats. However, the role of MAPKs in vascular tone regulation in early ontogenesis remains largely unexplored. We tested the hypothesis that the contribution of p42/44 and p38 MAPKs to the contraction of peripheral arteries is higher in the early postnatal period compared to adulthood. Saphenous arteries of 1- to 2-week-old and 2- to 3-month-old rats were studied using wire myography and western blotting. The α1-adrenoceptor agonist methoxamine did not increase the phosphorylation level of p38 MAPK in either 1- to 2-week-old or 2- to 3-month-old rats. Accordingly, inhibition of p38 MAPK did not affect arterial contraction to methoxamine in either age group. Methoxamine increased the phosphorylation level of p42/44 MAPKs in arteries of 2- to 3-month-old and of p44 MAPK in 1- to 2-week-old rats. Inhibition of p42/44 MAPKs reduced methoxamine-induced contractions in arteries of 2- to 3-month-old, but not 1- to 2-week-old rats. Thus, despite a high abundance in arterial tissue, p38 and p42/44 MAPKs do not regulate contraction of the saphenous artery in the early postnatal period. However, p42/44 MAPK activity contributes to arterial contractions in adult rats.


Asunto(s)
Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/genética , Contracción Muscular/genética , Receptores Adrenérgicos alfa 1/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Animales , Arterias/crecimiento & desarrollo , Arterias/metabolismo , Embrión de Mamíferos , Desarrollo Embrionario/genética , Humanos , Metoxamina/farmacología , Contracción Muscular/efectos de los fármacos , Músculo Liso/metabolismo , Fosforilación/efectos de los fármacos , Ratas
11.
Sci Rep ; 11(1): 14475, 2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-34262070

RESUMEN

Intrauterine growth restriction (IUGR) is one of the most common pathologies of pregnancy. The cardiovascular consequences of IUGR do not disappear in adulthood and can manifest themselves in pathological alterations of vasomotor control. The hypothesis was tested that IUGR weakens anticontractile influence of NO and augments procontractile influence of Rho-kinase in arteries of adult offspring. To model IUGR in the rat, dams were 50% food restricted starting from the gestational day 11 till delivery. Mesenteric and coronary arteries of male offspring were studied at the age of 3 months using wire myography, qPCR, and Western blotting. Contractile responses of mesenteric arteries to α1-adrenoceptor agonist methoxamine as well as influences of NO and Rho-kinase did not differ between control and IUGR rats. However, coronary arteries of IUGR rats demonstrated elevated contraction to thromboxane A2 receptor agonist U46619 due to weakened anticontractile influence of NO and enhanced role of Rho-kinase in the endothelium. This was accompanied by reduced abundance of SODI protein and elevated content of RhoA protein in coronary arteries of IUGR rats. IUGR considerably changes the regulation of coronary vascular tone in adulthood and, therefore, can serve as a risk factor for the development of cardiac disorders.


Asunto(s)
Vasos Coronarios/fisiopatología , Retardo del Crecimiento Fetal/etiología , Arterias Mesentéricas/fisiopatología , Óxido Nítrico/metabolismo , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacología , Amidas/farmacología , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , Arterias Mesentéricas/efectos de los fármacos , Contracción Muscular , Óxido Nítrico Sintasa de Tipo III/metabolismo , Embarazo , Piridinas/farmacología , Ratas Wistar , Quinasas Asociadas a rho/antagonistas & inhibidores
12.
Int J Mol Sci ; 22(10)2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-34067798

RESUMEN

In humans and other vertebrates pannexin protein family was discovered by homology to invertebrate gap junction proteins. Several biological functions were attributed to three vertebrate pannexins members. Six clinically significant independent variants of the PANX1 gene lead to human infertility and oocyte development defects, and the Arg217His variant was associated with pronounced symptoms of primary ovarian failure, severe intellectual disability, sensorineural hearing loss, and kyphosis. At the same time, only mild phenotypes were observed in Panx1 knockout mice. In addition, a passenger mutation was identified in a popular line of Panx1 knockout mice, questioning even those effects. Using CRISPR/Cas9, we created a new line of Panx1 knockout mice and a new line of mice with the clinically significant Panx1 substitution (Arg217His). In both cases, we observed no significant changes in mouse size, weight, or fertility. In addition, we attempted to reproduce a previous study on sleep/wake and locomotor activity functions in Panx1 knockout mice and found that previously reported effects were probably not caused by the Panx1 knockout itself. We consider that the pathological role of Arg217His substitution in Panx1, and some Panx1 functions in general calls for a re-evaluation.


Asunto(s)
Conexinas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Conexinas/genética , Conexinas/fisiología , Pérdida Auditiva Sensorineural/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación Missense/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Fenotipo , Sueño/genética
13.
Int J Mol Sci ; 22(11)2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34063769

RESUMEN

Maturation of the cardiovascular system is associated with crucial structural and functional remodeling. Thickening of the arterial wall, maturation of the sympathetic innervation, and switching of the mechanisms of arterial contraction from calcium-independent to calcium-dependent occur during postnatal development. All these processes promote an almost doubling of blood pressure from the moment of birth to reaching adulthood. This review focuses on the developmental alterations of potassium channels functioning as key smooth muscle membrane potential determinants and, consequently, vascular tone regulators. We present evidence that the pattern of potassium channel contribution to vascular control changes from Kir2, Kv1, Kv7 and TASK-1 channels to BKCa channels with maturation. The differences in the contribution of potassium channels to vasomotor tone at different stages of postnatal life should be considered in treatment strategies of cardiovascular diseases associated with potassium channel malfunction.


Asunto(s)
Arterias/metabolismo , Miocitos del Músculo Liso/metabolismo , Canales de Potasio/metabolismo , Animales , Presión Sanguínea/fisiología , Calcio/metabolismo , Potenciales de la Membrana/fisiología , Músculo Liso Vascular/metabolismo , Atención Posnatal/métodos
14.
Sci Rep ; 10(1): 20002, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33203943

RESUMEN

Membrane transporters and their functional contribution in vasculature change during early postnatal development. Here we tested the hypothesis that the contribution of Cl- channels to arterial contraction declines during early postnatal development and this decline is associated with the trophic sympathetic influence. Endothelium-denuded saphenous arteries from 1- to 2-week-old and 2- to 3-month-old male rats were used. Arterial contraction was assessed in the isometric myograph, in some experiments combined with measurements of membrane potential. mRNA and protein levels were determined by qPCR and Western blot. Sympathectomy was performed by treatment with guanethidine from the first postnatal day until 8-9-week age. Cl- substitution in the solution as well as Cl--channel blockers (MONNA, DIDS) had larger suppressive effect on the methoxamine-induced arterial contraction and methoxamine-induced depolarization of smooth muscle cells in 1- to 2-week-old compared to 2- to 3-month-old rats. Vasculature of younger group demonstrated elevated expression levels of TMEM16A and bestrophin 3. Chronic sympathectomy increased Cl- contribution to arterial contraction in 2-month-old rats that was associated with an increased TMEM16A expression level. Our study demonstrates that contribution of Cl- channels to agonist-induced arterial contraction and depolarization decreases during postnatal development. This postnatal decline is associated with sympathetic nerves development.


Asunto(s)
Arterias/metabolismo , Canales de Cloruro/metabolismo , Contracción Muscular/fisiología , Sistema Nervioso Simpático/metabolismo , Animales , Anoctamina-1/metabolismo , Arterias/efectos de los fármacos , Masculino , Metoxamina/farmacología , Contracción Muscular/efectos de los fármacos , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/fisiología , Ratas , Ratas Wistar , Simpatectomía/métodos , Sistema Nervioso Simpático/efectos de los fármacos , Sistema Nervioso Simpático/fisiología , Vasoconstricción/efectos de los fármacos , Vasoconstricción/fisiología
15.
Br J Pharmacol ; 177(22): 5148-5162, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32860629

RESUMEN

BACKGROUND AND PURPOSE: The vasomotor role of K2P potassium channels during early postnatal development has never been investigated. We tested the hypothesis that TASK-1 channel (K2P family member) contribution to arterial vascular tone and BP is higher in the early postnatal period than in adulthood. EXPERIMENTAL APPROACH: We studied 10- to 15-day-old ("young") and 2- to 3-month-old ("adult") male rats performing digital PCR (dPCR) (using endothelium-intact saphenous arteries), isometric myography, sharp microelectrode technique, quantitative PCR (qPCR) and Western blotting (using endothelium-denuded saphenous arteries), and arterial pressure measurements under urethane anaesthesia. KEY RESULTS: We found mRNA of Kcnk1-Kcnk7, Kcnk12, and Kcnk13 genes to be expressed in rat saphenous artery, and Kcnk3 (TASK-1) and Kcnk6 (TWIK-2) were most abundant in both age groups. The TASK-1 channel blocker AVE1231 (1 µmol·L-1 ) prominently depolarized arterial smooth muscle and increased basal tone level and contractile responses to methoxamine of arteries from young rats but had almost no effect in adult rats. The level of TASK-1 mRNA and protein expression was higher in arteries from young compared with adult rats. Importantly, intravenous administration of AVE1231 (4 mg·kg-1 ) had no effect on mean arterial pressure in adult rats but prominently raised it in young rats. CONCLUSION AND IMPLICATIONS: We showed that TASK-1 channels are important for negative feedback regulation of vasocontraction in young but not adult rats. The influence of TASK-1 channels most likely contributes to low BP level at perinatal age.


Asunto(s)
Arterias , Músculo Liso Vascular , Animales , Femenino , Masculino , Metoxamina , Miografía , Proteínas del Tejido Nervioso , Canales de Potasio , Canales de Potasio de Dominio Poro en Tándem , Embarazo , Ratas
16.
Front Physiol ; 11: 675, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32695017

RESUMEN

Introduction: Mechanical forces and sympathetic influences are key determinants of vascular structure and function. This study tested the hypothesis that hindlimb unloading (HU) exerts diverse effects on forelimb and hindlimb small arteries of rats in functionally different regions of the skeletal muscle and skin. Methods: Male Wistar rats were subjected to HU for 2 weeks, then skeletal muscle arteries (deep brachial and sural) and skin arteries (median and saphenous) were examined in vitro using wire myography or isobaric perfusion and glyoxylic acid staining. Results: HU increased lumen diameter of both forelimb arteries but decreased diameter of the sural artery; the saphenous artery diameter was not affected. Following HU, maximal contractile responses to noradrenaline and serotonin increased in the forelimb but decreased in the hindlimb skeletal muscle feed arteries with no change in skin arteries; all region-specific alterations persisted after endothelium removal. HU increased the sensitivity to vasoconstrictors in the saphenous artery but not in the sural artery. In the saphenous artery, initially high sympathetic innervation density was reduced by HU, sparse innervation in the sural artery was not affected. Electrical stimulation of periarterial sympathetic nerves in isobarically perfused segments of the saphenous artery demonstrated a two-fold decrease of the contractile responses in HU rats compared to that of controls. Conclusion: HU induces contrasting structural and functional adaptations in forelimb and hindlimb skeletal muscle arteries. Additionally, HU had diverse effects in two hindlimb vascular regions. Hyper-sensitivity of the saphenous artery to vasoconstrictors appears to result from the shortage of trophic sympathetic influence. Importantly, HU impaired sympathetically induced arterial vasoconstriction, consistent with the decreased sympathetic constrictor response in humans following space flight.

17.
Front Physiol ; 11: 455, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32508675

RESUMEN

INTRODUCTION: Dry immersion (DI) is a ground-based experimental model which reproduces the effects of microgravity on the cardiovascular system and, therefore, can be used to study the mechanisms of post-flight orthostatic intolerance in cosmonauts. However, the effects of long-duration DI on cardiovascular system have not been studied yet. The aim of this work was to study the effects of 21-day DI on systemic hemodynamics and its baroreflex control at rest and during head-up tilt test (HUTT). METHODS: Ten healthy young men were exposed to DI for 21 days. The day before, on the 7th, 14th, and 19th day of DI, as well as on the 1st and 5th days of recovery they were subjected to HUTT: 15 min in supine position and then 15 min of orthostasis (60°). ECG, arterial pressure, stroke volume and respiration rate were continuously recorded during the test. Phase synchronization index (PSI) of beat-to-beat mean arterial pressure (MAP) and heart rate (HR) in the frequency band of baroreflex waves (∼0.1 Hz) was used as a quantitative measure of baroreflex activity. RESULTS: During DI, strong tachycardia and the reduction of stroke volume were observed both in supine position and during HUTT, these indicators did not recover on post-immersion day 5. In contrast, systolic arterial pressure and MAP decreased during HUTT on 14th day of DI, but then restored to pre-immersion values. Before DI and on day 5 of recovery, a transition from supine position to orthostasis was accompanied by an increase in PSI at the baroreflex frequency. However, PSI did not change in HUTT performed during DI and on post-immersion day 1. The amplitude of MAP oscillations at this frequency were increased by HUTT at all time points, while an increase of respective HR oscillations was absent during DI. CONCLUSION: 21-day DI drastically changed the hemodynamic response to HUTT, while its effect on blood pressure was reduced between days 14 and 19, which speaks in favor of the adaptation to the conditions of DI. The lack of increase in phase synchronization of baroreflex MAP and HR oscillations during HUTT indicates disorders of baroreflex cardiac control during DI.

18.
Acta Physiol (Oxf) ; 226(4): e13279, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30957955

RESUMEN

AIM: This study aimed to assess intracellular Ca2+ dynamics in nerve cells and Schwann cells in isolated rat resistance arteries and determine how these dynamics modify noradrenaline release from the nerves and consequent force development. METHODS: Ca2+ in nerves was assessed with confocal imaging, noradrenaline release with amperometry and artery tone with wire myography. Ca2+ in axons was assessed after loading with Oregon Green 488 BAPTA-1 dextran. In other experiments, arteries were incubated with Calcium Green-1-AM which loads both axons and Schwann cells. RESULTS: Schwann cells but not axons responded with a Ca2+ increase to ATP. Electrical field stimulation of nerves caused a frequency-dependent increase in varicose [Ca2+ ] ([Ca2+ ]v ). ω-conotoxin-GVIA (100 nmol/L) reduced the [Ca2+ ]v transient to 2 and 16 Hz by 60% and 27%, respectively; in contrast ω-conotoxin GVIA inhibited more than 80% of the noradrenaline release and force development at 2 and 16 Hz. The KV channel blocker, 4-aminopyridine (10 µmol/L), increased [Ca2+ ]v , noradrenaline release and force development both in the absence and presence of ω-conotoxin-GVIA. Yohimbine (1 µmol/L) increased both [Ca2+ ]v and noradrenaline release but reduced force development. Acetylcholine (10 µmol/L) caused atropine-sensitive inhibition of [Ca2+ ]v , noradrenaline release and force. In the presence of ω-conotoxin-GVIA, acetylcholine caused a further inhibition of all parameters. CONCLUSION: Modification of [Ca2+ ] in arterial sympathetic axons and Schwann cells was assessed separately. KV 3.1 channels may be important regulators of [Ca2+ ]v , noradrenaline release and force development. Presynaptic adrenoceptor and muscarinic receptor activation modify transmitter release through modification of [Ca2+ ]v .


Asunto(s)
Neuronas Adrenérgicas/metabolismo , Calcio/metabolismo , Arterias Mesentéricas/metabolismo , Células de Schwann/metabolismo , Animales , Axones/metabolismo , Masculino , Arterias Mesentéricas/inervación , Contracción Muscular/fisiología , Músculo Liso Vascular/inervación , Músculo Liso Vascular/metabolismo , Norepinefrina/metabolismo , Ratas , Ratas Wistar , Canales de Potasio Shaw/metabolismo
19.
Physiol Meas ; 40(5): 054003, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-30884478

RESUMEN

OBJECTIVE: Phase synchronization of arterial pressure (AP) and pulse interval (PI) oscillations in the low-frequency band (around 0.4 Hz in rats) is governed by baroreflex activity. In long-term stationary data recordings, such synchronization can be estimated by the coherence. The phase synchronization index (PSI) can be used as well. The aim of this study was to correlate PSI and the coherence of AP and PI under stationary conditions and to estimate the informativity of PSI as a measure of baroreflex activity during transient processes. APPROACH: AP and PI were recorded in conscious Wistar rats using femoral artery catheters. To study the hemodynamics during hemorrhage, blood was gradually withdrawn (20 ml × kg-1 over 30 min) through a catheter in the carotid artery. MAIN RESULTS: PSI and coherence spectra calculated from 30-minute AP and PI recordings demonstrated distinct peaks at the frequency of 0.4 Hz; these indicators correlate well with each other (Pearson r = 0.920, p  < 0.0001). Both PSI and coherence were markedly suppressed by vagal blockade (methylatropine) and tended to reduce after sympathetic blockade (atenolol). Importantly, PSI demonstrated dynamic alterations during gradual hemorrhage. During the initial approx. 10 min of hemorrhage, AP did not change but PI was noticeably shortened, and PSI increased, which indicates the activation of the baroreflex. With further blood loss, baroreflex influences were not enough to prevent blood pressure from falling, and under such conditions PSI decreased. SIGNIFICANCE: PSI, like coherence, is an informative measure of baroreflex activity under stationary conditions. In addition, PSI permits us to follow the coupling between the baroreflex oscillations of AP and PI during transient processes, which strengthens its informative value.


Asunto(s)
Sistema Nervioso Autónomo/fisiopatología , Barorreflejo/fisiología , Presión Sanguínea/fisiología , Corazón/fisiopatología , Pulso Arterial , Animales , Hemorragia/fisiopatología , Masculino , Ratas Wistar
20.
Int J Mol Sci ; 20(6)2019 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-30901816

RESUMEN

Nitric oxide (NO) produced in the wall of blood vessels is necessary for the regulation of vascular tone to ensure an adequate blood supply of organs and tissues. In this review, we present evidence that the functioning of endothelial NO-synthase (eNOS) changes considerably during postnatal maturation. Alterations in NO-ergic vasoregulation in early ontogeny vary between vascular beds and correlate with the functional reorganization of a particular organ. Importantly, the anticontractile effect of NO can be an important mechanism responsible for the protectively low blood pressure in the immature circulatory system. The activity of eNOS is regulated by a number of hormones, including thyroid hormones which are key regulators of the perinatal developmental processes. Maternal thyroid hormone deficiency suppresses the anticontractile effect of NO at perinatal age. Such alterations disturb perinatal cardiovascular homeostasis and lead to delayed occurring cardiovascular pathologies in adulthood. The newly discovered role of thyroid hormones may have broad implications in cardiovascular medicine, considering the extremely high prevalence of maternal hypothyroidism in human society.


Asunto(s)
Vasos Sanguíneos/fisiología , Endotelio Vascular/fisiología , Neovascularización Fisiológica , Óxido Nítrico/biosíntesis , Animales , Biomarcadores , Circulación Sanguínea , Humanos , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Hormonas Tiroideas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...