Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Virol J ; 21(1): 48, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38395943

RESUMEN

BACKGROUND: The antiviral properties of metal nanoparticles against various viruses, including those resistant to drugs, are currently a subject of intensive research. Recently, the green synthesis of nanoparticles and their anti-viral function have attracted a lot of attention. Previous studies have shown promising results in the use of Arabic gum for the green synthesis of nanoparticles with strong antiviral properties. In this study we aimed to investigate the antiviral effects of MnO2 nanoparticles (MnO2-NPs) synthesized using Arabic gum, particularly against the influenza virus. METHODS: Arabic gum was used as a natural polymer to extract and synthesize MnO2-NPs using a green chemistry approach. The synthesized MnO2-NPs were characterized using SEM and TEM. To evaluate virus titration, cytotoxicity, and antiviral activity, TCID50, MTT, and Hemagglutination assay (HA) were performed, respectively. Molecular docking studies were also performed to investigate the potential antiviral activity of the synthesized MnO2-NPs against the influenza virus. The molecular docking was carried out using AutoDock Vina software followed by an analysis with VMD software to investigate the interaction between Arabic gum and the hemagglutinin protein. RESULTS: Simultaneous combination treatment with the green-synthesized MnO2-NPs resulted in a 3.5 log HA decrement and 69.7% cellular protection, which demonstrated the most significant difference in cellular protection compared to the virus control group (p-value < 0.01). The docking results showed that binding affinities were between - 3.3 and - 5.8 kcal/mole relating with the interaction between target with MnO2 and beta-D-galactopyranuronic acid, respectively. CONCLUSION: The results of the study indicated that the MnO2-NPs synthesized with Arabic gum had significant antiviral effects against the influenza virus, highlighting their potential as a natural and effective treatment for inhibition of respiratory infections.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Nanopartículas del Metal , Humanos , Gripe Humana/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Compuestos de Manganeso/farmacología , Óxidos/farmacología , Nanopartículas del Metal/química , Antivirales/farmacología
2.
J Med Microbiol ; 66(4): 536-541, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28463668

RESUMEN

PURPOSE: Autophagy plays a key role in host defence responses against microbial infections by promoting degradation of pathogens and participating in acquired immunity. The interaction between autophagy and viruses is complex, and this pathway is hijacked by several viruses. Influenza virus (IV) interferes with autophagy through its replication and increases the accumulation of autophagosomes by blocking lysosome fusion. Thus, autophagy could be an effective area for antiviral research. METHODOLOGY: In this study, we evaluated the effect of autophagy on IV replication. Two cell lines were transfected with Beclin-1 expression plasmid before (prophylactic approach) and after (therapeutic approach) IV inoculation.Results/Key findings. Beclin-1 overexpression in the cells infected by virus induced autophagy to 26 %. The log10haemagglutinin titre and TCID50 (tissue culture infective dose giving 50 % infection) of replicating virus were measured at 24 and 48 h post-infection. In the prophylactic approach, the virus titre was enhanced significantly at 24 h post-infection (P≤0.01), but it was not significantly different from the control at 48 h post-infection. In contrast, the therapeutic approach of autophagy induction inhibited the virus replication at 24 and 48 h post-infection. Additionally, we showed that inhibition of autophagy using 3-methyladenine reduced viral replication. CONCLUSION: This study revealed that the virus (H1N1) titre was controlled in a time-dependent manner following autophagy induction in host cells. Manipulation of autophagy during the IV life cycle can be targeted both for antiviral aims and for increasing viral yield for virus production.


Asunto(s)
Autofagia/inmunología , Beclina-1/metabolismo , Virus de la Influenza A/crecimiento & desarrollo , Infecciones por Orthomyxoviridae/inmunología , Replicación Viral/inmunología , Adenina/análogos & derivados , Adenina/farmacología , Animales , Autofagia/efectos de los fármacos , Beclina-1/genética , Perros , Hemaglutininas/inmunología , Virus de la Influenza A/genética , Células de Riñón Canino Madin Darby , Infecciones por Orthomyxoviridae/virología , Transfección/métodos , Carga Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA