Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 1569, 2023 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-36709371

RESUMEN

Component criticality analysis of infrastructure systems has traditionally focused on physical networks rather than infrastructure services. As an example, a key objective of transport infrastructure is to ensure mobility and resilient access to public services, including for the population, service providers, and associated supply chains. We introduce a new user-centric measure for estimating infrastructure criticality and urban accessibility to critical public services - particularly healthcare facilities without loss of generality - and the effects of disaster-induced infrastructure disruptions. Accessibility measures include individuals' choices of all services in each sector. The approach is scalable and modular while preserving detailed features necessary for local planning decisions. It relies on open data to simulate various disaster scenarios, including floods, seismic, and compound shocks. We present results for Lima, Peru, and Manila, Philippines, to illustrate how the approach identifies the most affected areas by shocks, underserved populations, and changes in accessibility and critical infrastructure components. We capture the changes in people's choices of health service providers under each scenario. For Lima, we show that the floods of 2020 caused an increase in average access times to all health services from 33 minutes to 48 minutes. We identify specific critical road segments for ensuring access under each scenario. For Manila, we locate the 22% of the population who lost complete access to all higher health services due to flooding of over 15 cm. The approach is used to identify and prioritize targeted measures to strengthen the resilience of critical public services and their supporting infrastructure systems, while putting the population at the center of decision-making.


Asunto(s)
Desastres , Humanos , Filipinas , Inundaciones , Servicios de Salud , Accesibilidad a los Servicios de Salud , Gestión de Riesgos
2.
Healthcare (Basel) ; 10(5)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35627963

RESUMEN

Health care is uncertain, dynamic, and fast growing. With digital technologies set to revolutionise the industry, hospital capacity optimisation and planning have never been more relevant. The purposes of this article are threefold. The first is to identify the current state of the art, to summarise/analyse the key achievements, and to identify gaps in the body of research. The second is to synthesise and evaluate that literature to create a holistic framework for understanding hospital capacity planning and optimisation, in terms of physical elements, process, and governance. Third, avenues for future research are sought to inform researchers and practitioners where they should best concentrate their efforts. In conclusion, we find that prior research has typically focussed on individual parts, but the hospital is one body that is made up of many interdependent parts. It is also evident that past attempts considering entire hospitals fail to incorporate all the detail that is necessary to provide solutions that can be implemented in the real world, across strategic, tactical and operational planning horizons. A holistic approach is needed that includes ancillary services, equipment medicines, utilities, instrument trays, supply chain and inventory considerations.

3.
Disaster Med Public Health Prep ; 17: e110, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35000643

RESUMEN

OBJECTIVE: The aim of this study was to investigate the performance of key hospital units associated with emergency care of both routine emergency and pandemic (COVID-19) patients under capacity enhancing strategies. METHODS: This investigation was conducted using whole-hospital, resource-constrained, patient-based, stochastic, discrete-event, simulation models of a generic 200-bed urban U.S. tertiary hospital serving routine emergency and COVID-19 patients. Systematically designed numerical experiments were conducted to provide generalizable insights into how hospital functionality may be affected by the care of COVID-19 pandemic patients along specially designated care paths, under changing pandemic situations, from getting ready to turning all of its resources to pandemic care. RESULTS: Several insights are presented. For example, each day of reduction in average ICU length of stay increases intensive care unit patient throughput by up to 24% for high COVID-19 daily patient arrival levels. The potential of 5 specific interventions and 2 critical shifts in care strategies to significantly increase hospital capacity is also described. CONCLUSIONS: These estimates enable hospitals to repurpose space, modify operations, implement crisis standards of care, collaborate with other health care facilities, or request external support, thereby increasing the likelihood that arriving patients will find an open staffed bed when 1 is needed.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , SARS-CoV-2 , Pandemias/prevención & control , Unidades de Cuidados Intensivos , Cuidados Críticos , Centros de Atención Terciaria
4.
Digit Health ; 7: 20552076211059366, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34868621

RESUMEN

OBJECTIVE: This paper investigates the impact on emergency hospital services from initiation through recovery of a ransomware attack affecting the emergency department, intensive care unit and supporting laboratory services. Recovery strategies of paying ransom to the attackers with follow-on restoration and in-house full system restoration from backup are compared. METHODS: A multi-unit, patient-based and resource-constrained discrete-event simulation model of a typical U.S. urban tertiary hospital is adapted to model the attack, its impacts, and tested recovery strategies. The model is used to quantify the hospital's resilience to cyberattack. Insights were gleaned from systematically designed numerical experiments. RESULTS: While paying the ransom was found to result in some short-term gains assuming the perpetrators actually provide the decryption key as promised, in the longer term, the results of this study suggest that paying the ransom does not pay off. Rather, paying the ransom, when considered at the end of the event when services are fully restored, precluded significantly more patients from receiving critically needed care. Also noted was a lag in recovery for the intensive care unit as compared with the emergency department. Such a lag must be considered in preparedness plans. CONCLUSION: Vulnerability to cyberattacks is a major challenge to the healthcare system. This paper provides a methodology for assessing the resilience of a hospital to cyberattacks and analyzing the effects of different response strategies. The model showed that paying the ransom resulted in short-term gains but did not pay off in the longer term.

5.
Disaster Med Public Health Prep ; 12(6): 778-790, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29553040

RESUMEN

Mass casualty incidents are a concern in many urban areas. A community's ability to cope with such events depends on the capacities and capabilities of its hospitals for handling a sudden surge in demand of patients with resource-intensive and specialized medical needs. This paper uses a whole-hospital simulation model to replicate medical staff, resources, and space for the purpose of investigating hospital responsiveness to mass casualty incidents. It provides details of probable demand patterns of different mass casualty incident types in terms of patient categories and arrival patterns, and accounts for related transient system behavior over the response period. Using the layout of a typical urban hospital, it investigates a hospital's capacity and capability to handle mass casualty incidents of various sizes with various characteristics, and assesses the effectiveness of designed demand management and capacity-expansion strategies. Average performance improvements gained through capacity-expansion strategies are quantified and best response actions are identified. Capacity-expansion strategies were found to have superadditive benefits when combined. In fact, an acceptable service level could be achieved by implementing only 2 to 3 of the 9 studied enhancement strategies. (Disaster Med Public Health Preparedness. 2018;12:778-790).


Asunto(s)
Hospitales/normas , Incidentes con Víctimas en Masa , Defensa Civil/métodos , Aglomeración , Planificación en Desastres/métodos , Hospitales/tendencias , Humanos , Asignación de Recursos/métodos , Capacidad de Reacción/tendencias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...