Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Photochem Photobiol Sci ; 21(9): 1601-1616, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35644001

RESUMEN

In this study, simultaneous photocatalytic degradation of different parabens (methyl-, ethyl-, propyl-, and butyl paraben) and UV filters (benzophenone-3, 4-methylbenzylidene camphor, 2-ethylhexyl 4-(dimethylamino) benzoate, ethylhexyl methoxycinnamate and octocrylene) in water matrices was performed under visible light irradiation using novel double plasmonic Ag@Ag3PO4/Ag@AgCl nanophotocatalyst, synthesized by an easy and fast photochemical conversion and photo-reduction. It was found that the nanophotocatalyst with appropriate mole ratio of Ag@Ag3PO4/Ag@AgCl (1:3) showed superior photocatalytic activity than individual plasmonic nanoparticles. This is because there are two simultaneous surface plasmon resonances (SPR) generated by the metallic Ag nanoparticles, in addition to the hetero-junction structure formed at the interface between Ag@Ag3PO4 and Ag@AgCl. The structures of the synthesized photocatalysts were characterized, and the principal reactive oxygen species in the photocatalytic process were identified via a trapping experiment, confirming superoxide radicals (∙O2-) as the key reactive species of the photocatalytic system. The process of photodegradation of the target pollutants was monitored using an optimized method that incorporated solid-phase extraction in combination with gas chromatography-mass spectrometry. The simultaneous photodegradation process was modeled and optimized using central composite design. The kinetic study revealed that the degradation process over Ag@Ag3PO4 (30%)/Ag@AgCl (70%) under visible light followed a pseudo-first-order kinetic model. The simultaneous degradation of target compounds was further investigated in sewage treatment plant effluent as well as tap water. It was found that the matrix constituents can reduce the photodegradation efficiency, especially in the case of highly contaminated samples.


Asunto(s)
Nanopartículas del Metal , Compuestos de Plata , Catálisis , Luz , Nanopartículas del Metal/química , Parabenos , Plata/química , Compuestos de Plata/química , Agua
2.
Talanta ; 221: 121560, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33076113

RESUMEN

In a novel approach, an efficient non-enzymatic glucose sensor based on pure phase of aurivillius bismuth molybdate (BM or γ-Bi2MoO6) mixed metal oxides is reported. Three BM samples were synthesized, with/without l-cysteine (Cys) and dodecylamine (DDA) as additives, leading to different shapes: bullet (BM-C), confetti (BM-2Cys) and candy (BM-2DDA). The morphology and purity of the structures were confirmed by FE-SEM images and XRD. In order to investigate the sensor application, the samples were integrated on reduced graphene oxide and incorporated into simple and inexpensive glassy carbon electrode (GCE) without using any polyvinylpyrrolidone (PVP) or Nafion. To perform cyclic voltammetry experiments, all three biosensors were measured in PBS solution (pH = 7) in ±1.5 voltage range and 50 mV s-1 scan rate. Glucose identification by the synthesized composites is an obvious sign of their high efficiency. According to chronoamperomograms, the best sensitivity of 3050 µA L mmol-1 cm-2 with linear range of 0.02-0.14 mmol L-1, low detection limit (LOD) of 0.004 mmol L-1 and the signal/noise equal to 3 was achieved by BM-2DDA/rGO/GCE biosensor and its speedy amperometric response is less than 5 s. This biosensor showed impressive selectivity, repeatability and reproducibility results besides it maintains its stability considerably in great percentage of 98.5% after eight weeks. Also it showed prolonged stability after 50 min.


Asunto(s)
Técnicas Biosensibles , Grafito , Bismuto , Técnicas Electroquímicas , Electrodos , Glucosa , Molibdeno , Reproducibilidad de los Resultados
3.
Iran J Biotechnol ; 18(2): e2231, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33542931

RESUMEN

BACKGROUND: Drug discovery process is growing considerably due to the noteworthy resource of natural products. Persipeptides A and B are cyclopeptide antibiotics, which are produced by Streptomyces zagrosensis UTMC 1154. Although extraction of culture broth with the help of solvent has been optimized previously, no effort for In-Situ extraction of persipeptides has been done yet. OBJECTIVE: To produce a high quantity of persipeptides for further drug evaluation, it is crucial to design approaches aimed at improvement of the extraction yield. MATERIALS AND METHODS: Amberlite XAD-16N was employed into the fermentation culture medium of S. zagrosensis in order to enhance the In-Situ extraction of persipeptides. Effects of resin content (%), resin addition time (h), and fermentation time (day) were investigated by a two-level full factorial experimental design. RESULTS: The main factors of resin content (%) and the interaction of resin content (%) with resin addition time (day) were found to be important using ANOVA. The results showed the amount of 0.33 % (w.v-1) amberlite XAD-16N added at 27.2 h post-inoculation was the most effective combination to increase the efficiency of In-Situ adsorption capacity of persipeptides. CONCLUSIONS: The provided method requires 3.3 g resin and 200 mL methanol for the extraction of persipeptides from each liter of fermentation culture of S. zagrosensis in less than 15 min. Apart from cost-efficiently and simplicity, this procedure enhanced the recovery of persipeptides by 7 % and 3 times, compared to ISP2 medium without any resin after 4 and 7 days of fermentation, respectively. Therefore, this method can be regarded as a cost-efficient enhancement approach for the production of these newly-discovered metabolites before implementing the genetic manipulation or intensive media optimization, demanding considerable time and effort.

4.
Langmuir ; 35(34): 11188-11199, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31373498

RESUMEN

Herein, in a new approach, highly porous alumina materials (HiPAs) have been synthesized through cetyltrimethylammonium bromide (CTAB) bloated micelles or merged CTAB/dicarboxylic acid vesicular aggregates (di-acids with 8, 10, and 12 carbon atoms) as novel templates and characterized by N2 sorption, low- and wide-angle XRD (X-ray diffraction), FE-SEM (field emission scanning electron microscopy), TEM (transmission electron microscopy), HR-TEM (high-resolution transmission electron microscopy), DLS (dynamic light scattering), and AFM (atomic force microscopy) analyses. In the absence of dicarboxylic acids, CTAB bloated micelles in ethanol-aqueous solutions were conductive to the formation of mesoporous γ-alumina hollow spheres (HiPA-CT) with high surface area (394 m2 g-1) and ultralarge pore volume (1.8 cm3 g-1). Notably, merged giant vesicular assemblies formed between dicarboxylic acids and CTAB endowed the mesoporous alumina nanoparticle aggregates with tunable and unprecedented pore features (surface area of 415-735 m2 g-1 and ultrahigh pore volume of 1.37-2.57 cm3 g-1), in which their pinnacle was obtained via CTAB/10 (HiPA-CT-10). Due to the tailored porosity, the HiPA-CT and HiPA-CT-10 were exploited for ciprofloxacin (CIP) adsorption experiments. The adsorption efficiency attained a climax at pH 6. At CIP concentrations below 1 ppm, 91 and 86% of CIP were removed by HiPA-CT and HiPA-CT-10, respectively. The maximum adsorption capacities of HiPA-CT and HiPA-CT-10 are 120 and 184 mg g-1, respectively, in which the latter is surpassing those of inorganic antibiotic adsorbents reported so far. The kinetic results showed that the removal of CIP by HiPA-CT was faster due to the presence of macropores and more accessible active sites on mesoporous surfaces. The reusability test was acceptable after eight runs. The results signify that these novel materials have high potential for reducing our environmental concerns.

5.
J Biomol Struct Dyn ; 36(12): 3058-3076, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29027501

RESUMEN

The aim of this study was synthesis of two new water-soluble fluorescent palladium and platinum complexes with formulas of [Pt(DACH)(FIP)](NO3)2 and [Pd(DACH)(FIP)](NO3)2, respectively, where FIP is 2-(furan-2-yl)-1H-imidazo[4,5-f][1,10] phenanthroline and DACH is 1R,2R-diaminocyclohexane. Fluorescence spectroscopy, circular dichroism (CD), thermal denaturation measurement, ionic strength, and kinetic study displayed groove binding of Pt complex on DNA, while due to binding of Pd complex, B form of DNA convert to Z form. Due to electrostatic interaction of Pd complex with DNA, the DNA form is converted and it provides enough space for Pd complex to insert between base stacking of DNA. UV-vis study shows two complexes could denature the DNA at low concentrations in exothermic process and Pt complex is more active than Pd complex. Finally, the anticancer and growth inhibitory activities of synthesized complexes were investigated against human colon cancer cell line HCT116 after incubation time of 24 h using MTT assay and higher activity was observed for the platinum complex. Interaction of the two metal derivative complexes was studied by molecular docking and molecular dynamics simulation. The results showed that Pt complexes have higher negative docking energy and higher tendency for interaction with DNA, and exert more structural change on DNA.


Asunto(s)
Complejos de Coordinación/farmacología , ADN/efectos de los fármacos , Imidazoles/farmacología , Neoplasias/tratamiento farmacológico , Antineoplásicos/química , Antineoplásicos/farmacología , Dicroismo Circular , Cisplatino/química , Cisplatino/farmacología , Complejos de Coordinación/química , Ciclohexanos/química , Ciclohexanos/farmacología , ADN/química , ADN/genética , Sondas de ADN/química , Colorantes Fluorescentes/química , Células HCT116 , Humanos , Imidazoles/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Compuestos Organoplatinos/farmacología , Paladio/química , Paladio/farmacología
6.
Nanomaterials (Basel) ; 7(8)2017 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-28783087

RESUMEN

Nanostructures of MIL-100 were synthesized and used as a drug delivery platform for two members of the Tetracycline family. Doxycycline monohydrate (DOX) and Tetracycline hydrochloride (TC) were loaded separately on nano-MIL-100 (nanoparticles of drug@carrier were abbreviated as DOX@MIL-100 and TC@MIL-100). Characterizations were carried out using FT-IR, XRD, BET, DLS, and SEM. The FT-IR spectra revealed that the drugs were loaded into the framework of the carrier. The XRD patterns of DOX@MIL-100 and TC@MIL-100 indicated that no free DOX or TC were present. It could be concluded that the drugs are well dispersed into the pores of nano-MIL-100. The microporosity of the carrier was confirmed by BJH data. BET analysis showed a reduction in the free surface for both DOX@MIL-100 and TC@MIL-100. The release of TC and DOX was investigated, and it was revealed that MIL-100 mediated the drug solubility in water, which in turn resulted in a decrease in the release rate of TC (accelerating in DOX case) without lowering the total amount of released drug. After 48 h, 96 percent of the TC was sustain released, which is an unprecedented amount in comparison with other methods.

7.
Appl Biochem Biotechnol ; 182(1): 110-127, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27933484

RESUMEN

Imidazole ring is a known structure in many natural or synthetic drug molecules and its metal complexes can interact with DNA and do the cleavage. Hence, to study the influence of the structure and size of the ligand on biological behavior of metal complexes, two water-soluble Pd(II) complexes of phen and FIP ligands (where phen is 1,10-phenanthroline and FIP is 2-(Furan-2-yl)-1H-Imidazo[4,5-f][1, 10]phenanthroline) with the formula of [Pd(phen)(FIP)](NO3)2 and [Pd(FIP)2]Cl2, that were activated against chronic myelogenous leukemia cell line, K562, were selected. Also, the interaction of these anticancer Pd(II) complexes with highly polymerized calf thymus DNA was extensively studied by means of electronic absorption, fluorescence, and circular dichroism in Tris-buffer. The results showed that the binding was positive cooperation and [Pd(phen)(FIP)](NO3)2 (K f = 127 M-1 G = 1.2) exhibited higher binding constant and number of binding sites than [Pd(FIP)2]Cl2 (K f = 13 M-1 G = 1.03) upon binding to DNA. The fluorescence data indicates that quenching effect for [Pd(phen)(FIP)](NO3)2 (K SV = 58 mM-1) was higher than [Pd(FIP)2]Cl2 (K SV = 12 mM-1). Also, [Pd(FIP)2]Cl2 interacts with ethidium bromide-DNA, as non-competitive inhibition, and can bind to DNA via groove binding and [Pd(phen)(FIP)](NO3)2 can intercalate in DNA. These results were confirmed by circular dichroism spectra. Docking data revealed that longer complexes have higher interaction energy and bind to DNA via groove binding. Graphical Abstract Two anticancer Pd(II) complexes of imidazole derivative have been synthesized and interacted with calf thymus DNA. Modes of binding have been studied by electronic absorption, fluorescence, and CD measurements. [Pd(FIP)2]Cl2 can bind to DNA via groove binding while intercalation mode of binding is observed for [Pd(phen)(FIP)](NO3)2.


Asunto(s)
Antineoplásicos/síntesis química , Complejos de Coordinación/síntesis química , ADN/química , Imidazoles/química , Sustancias Intercalantes/síntesis química , Paladio/química , Fenantrolinas/química , Antineoplásicos/farmacología , Sitios de Unión , Cationes Bivalentes , Supervivencia Celular/efectos de los fármacos , Complejos de Coordinación/farmacología , Etidio/química , Furanos/química , Humanos , Sustancias Intercalantes/farmacología , Células K562 , Ligandos , Simulación del Acoplamiento Molecular , Termodinámica
8.
Biosens Bioelectron ; 90: 290-297, 2017 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-27931003

RESUMEN

A new derivative of dipodal 1,3-calix[4]arene-based chemosensor (R), which was containing several binding sites have been synthesized and characterized by NMR, IR and LC-MS spectroscopic methods. The selectivity of Rhas been investigated in aqueous methanol, resulting in fluorescence shift and selective recognition of Ag+ among 20 various alkali, alkaline earth and transition metal ions. Microstructural features of R and its complex with Ag+have been investigated by Atomic Force Microscopy (AFM). AFM images can clearly differentiate R from its complex of Ag+. Moreover; the complicated binding mode of metal-ligand complex has been explored by UV-Vis, LC-MS, FIR, Fluorescence titration, Job's plot method and theoretical approaches. Density functional theory (DFT) method at B3LYP/LANL2DZ level of theory was employed for computational studies. Theoretical calculations revealed that selectivity and specificity of R toward Ag+ could be attributed to structural conformation of 1,3-alternate-calix[4]arene scaffold and molecular electrostatic potential of its surface. Furthermore; the competitive experiments were carried out to test sensor's ability for practical uses. Finally, the efficiency of R in matrix of physiological cations was examined and showed gradual emission enhancement which makes R an ideal candidate for monitoring of Ag+ in physiological environment.


Asunto(s)
Calixarenos/química , Colorantes Fluorescentes/química , Fenoles/química , Plata/análisis , Tiadiazoles/química , Técnicas Biosensibles/métodos , Cationes Monovalentes/análisis , Modelos Moleculares , Espectrometría de Fluorescencia/métodos
9.
Biosens Bioelectron ; 67: 601-7, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25305803

RESUMEN

In a new approach, shape controlled synthesis of zinc oxide nanostructures were carried out using a solvothermal route assisted amino acids such as L-Lysine (lysine), L-Cysteine (cysteine) and L-Arginine (arginine) as bifunctional species with (or without) urea or oxalic acid as additives which affect the pH of the reaction. Rod, powder, particle, cube, rock candy-like, sheet, sphere, brain-like, groundnut-like and pussy willow-like morphologies were obtained through the synthetic route. Particle sizes varied from 25 nm to4 µm. To test the application, nine ZnO nanostructures, formulated by multi-walled carbon nanotube (MWCNT) on glassy carbon electrode (GCE) were applied as new nanobiosensors for detecting glucose in a simple and inexpensive way without using any glucose oxidase or nafion. Glucose sensing accomplished in a phosphate buffer solution (PBS, pH=7) for ZnO/MWCNT/GCE samples. Results showed that in this non-enzymatic biosensor system, spherical ZnO obtained from zinc acetate/cycteine/oxalic acid synthetic route has the highest sensitivity of 64.29 µA/cm(2) mM with repeatable results. For the mentioned sensor, no interference observed in the presence of dopamine, uric acid and fructose.


Asunto(s)
Técnicas Biosensibles , Glucosa Oxidasa/química , Glucosa/aislamiento & purificación , Nanotubos de Carbono/química , Arginina/química , Cisteína/química , Técnicas Electroquímicas , Enzimas Inmovilizadas/química , Glucosa/química , Humanos , Nanoestructuras/química , Óxido de Zinc/química
10.
J Colloid Interface Sci ; 303(1): 32-8, 2006 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-16901499

RESUMEN

The Keggin and Preyssler tungsten heteropolyacids, H3PW12O40 and H15P5W30O110, have been immobilized on the inner surface of mesoporous MCM-41, fume silica and silica-gel by means of chemical bonding to aminosilane groups. The materials were characterized by FT-IR spectroscopy, low-angle XRD and BET surface area analysis. The tendencies of heteropolyacids adsorption in solution on functionalized silicas have been investigated by UV-vis. Among the functionalized silica materials, MCM-41 showed the largest amine to silica and the least heteropolyacid to silica ratios. The BET surface area revealed that in all three cases the surface area decreased after grafting amine group and anchoring of the HPAs clusters. Low-angle XRD analysis showed that by introducing HPA into functionalized MCM-41 the intensity of the main reflection decreased significantly.

11.
Anal Sci ; 20(4): 725-9, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15116976

RESUMEN

A novel method for the rapid extraction and determination of a ppt level of Pb2+ and Cu2+ ions using partial silylated MCM-41 modified by a new salophen and inductively coupled plasma atomic emission spectrometry (ICP-AES) is introduced. The preconcentration factor of the method is 500, and the detection limits of Pb2+ and Cu2+ are 335 and 34 ng L(-1), respectively. The time and efficiency of extraction, the pH and flow rate, the type and minimum amount of acid for stripping of Pb2+ and Cu2+ from modified MCM-41 and the break-through volume were investigated. The maximum capacity of 4 mg of silylated MCM-41 modified by salophen used was found to be 150 +/- 4 and 117 +/- 3 microg of Pb2+ and Cu2+, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA