Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Insect Sci ; 30(4): 964-974, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37189246

RESUMEN

Mass production of black soldier fly, Hermetia illucens (L.) (Diptera: Stratiomyidae), larvae results in massive heat generation, which impacts facility management, waste conversion, and larval production. We tested daily substrate temperatures with different population densities (i.e., 0, 500, 1000, 5000, and 10 000 larvae/pan), different population sizes (i.e., 166, 1000, and 10 000 larvae at a fixed feed ratio) and air temperatures (i.e., 20 and 30 °C) on various production parameters. Impacts of shifting larvae from 30 to 20 °C on either day 9 or 11 were also determined. Larval activity increased substrate temperatures significantly (i.e., at least 10 °C above air temperatures). Low air temperature favored growth with the higher population sizes while high temperature favored growth with low population sizes. The greatest average individual larval weights (e.g., 0.126 and 0.124 g) and feed conversion ratios (e.g., 1.92 and 2.08 g/g) were recorded for either 10 000 larvae reared at 20 °C or 100 larvae reared at 30 °C. Shifting temperatures from high (30 °C) to low (20 °C) in between (∼10-d-old larvae) impacted larval production weights (16% increases) and feed conversion ratios (increased 14%). Facilities should consider the impact of larval density, population size, and air temperature during black soldier fly mass production as these factors impact overall larval production.


Asunto(s)
Dípteros , Animales , Larva , Calor , Temperatura , Regulación de la Temperatura Corporal
2.
Front Microbiol ; 13: 1064904, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36569070

RESUMEN

Background: Post-mortem microbial communities are increasingly investigated as proxy evidence for a variety of factors of interest in forensic science. The reported predictive power of the microbial community to determine aspects of the individual's post-mortem history (e.g., the post-mortem interval) varies substantially among published research. This observed variation is partially driven by the local environment or the individual themselves. In the current study, we investigated the impact of BMI, sex, insect activity, season, repeat sampling, decomposition time, and temperature on the microbial community sampled from donated human remains in San Marcos, TX using a high-throughput gene-fragment metabarcoding approach. Materials and methods: In the current study, we investigated the impact of BMI, sex, insect activity, season, repeat sampling, decomposition time, and temperature on the microbial community sampled from donated human remains in San Marcos, TX using a high-throughput gene-fragment metabarcoding approach. Results: We found that season, temperature at the sampling site, BMI, and sex had a significant effect on the post-mortem microbiome, the presence of insects has a homogenizing influence on the total bacterial community, and that community consistency from repeat sampling decreases as the decomposition process progresses. Moreover, we demonstrate the importance of temperature at the site of sampling on the abundance of important diagnostic taxa. Conclusion: The results of this study suggest that while the bacterial community or specific bacterial species may prove to be useful for forensic applications, a clearer understanding of the mechanisms underpinning microbial decomposition will greatly increase the utility of microbial evidence in forensic casework.

3.
Insects ; 13(10)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36292896

RESUMEN

Blow fly development is important in decomposition ecology, agriculture, and forensics. Much of the impact of these species is from immature samples, thus knowledge of their development is important to enhance or ameliorate their effects. One application of this information is the estimation of immature insect age to provide temporal information for death investigations. While traditional markers of age such as stage and size are generally accurate, they lack precision in later developmental stages. We used miRNA sequencing to measure miRNA expression, throughout development, of the secondary screwworm, Cochliomyia macellaria (Fabricius) (Diptera: Calliphoridae) and identified 217 miRNAs present across the samples. Ten were identified to be significantly differentially expressed in larval samples and seventeen were found to be significantly differentially expressed in intrapuparial samples. Twenty-eight miRNAs were identified to be differentially expressed between sexes. Expression patterns of two miRNAs, miR-92b and bantam, were qPCR-validated in intrapuparial samples; these and likely food-derived miRNAs appear to be stable markers of age in C. macellaria. Our results support the use of miRNAs for developmental markers of age and suggest further investigations across species and under a range of abiotic and biotic conditions.

4.
Pest Manag Sci ; 78(8): 3215-3225, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35338587

RESUMEN

RNA interference (RNAi) selectively targets genes and silences their expression in vivo, causing developmental defects, mortality and altered behavior. Consequently, RNAi has emerged as a promising research area for insect pest management. However, it is not yet a viable alternative over conventional pesticides despite several theoretical advantages in safety and specificity. As a first step toward a more standardized approach, a machine learning algorithm was used to identify factors that predict trial efficacy. Current research on RNAi for pest management is highly variable and relatively unstandardized. The applied random forest model was able to reliably predict mortality ranges based on bioassay parameters with 72.6% accuracy. Response time and target gene were the most important variables in the model, followed by applied dose, double-stranded RNA (dsRNA) construct size and target species, further supported by generalized linear mixed effect modeling. Our results identified informative trends, supporting the idea that basic principles of toxicology apply to RNAi bioassays and provide initial guidelines standardizing future research similar to studies of traditional insecticides. We advocate for training that integrates genetic, organismal, and toxicological approaches to accelerate the development of RNAi as an effective tool for pest management. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Proteínas de Insectos , Proyectos de Investigación , Animales , Control de Insectos/métodos , Proteínas de Insectos/genética , Insectos/genética , Insectos/metabolismo , Interferencia de ARN , ARN Bicatenario/genética
5.
Front Physiol ; 13: 833652, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35153841

RESUMEN

RNA interference is a powerful tool that post-transcriptionally silences target genes. However, silencing efficacy varies greatly among different insect species. Recently, we attempted to knock down some housekeeping genes in the tawny crazy ant (Nylanderia fulva), a relatively new invasive species in the southern United States, but only achieved relatively low silencing efficiency when dsRNA was orally administered. Here, we detected divalent cation-dependent, dsRNA-degrading activity in the midgut fluid of worker ants in ex vivo assays. To determine whether dsRNA degradation could contribute to low effectiveness of oral RNAi in N. fulva, we cloned its sole dsRNase gene (NfdsRNase). The deduced amino acid sequence contained a signal peptide and an endonuclease domain. Sequence alignment indicated a high degree of similarity with well-characterized dsRNases, particularly the six key residues at active sites. We also identified dsRNase homologs from five other ant species and found a tight phylogenetic relationship among ant dsRNases. NfdsRNase is expressed predominantly in the abdomen of worker ants. Oral delivery of dsRNA of NfdsRNase significantly reduced the expression of NfdsRNase transcripts, and substantially suppressed dsRNA-degrading activity of worker ants' midgut fluids as well. Our data suggest that dsRNA stability in the alimentary tract is an important factor for gene silencing efficiency in N. fulva, and that blocking NfdsRNase in gut lumen could potentially improve RNAi, a novel pest management tactic in control of N. fulva and other ant species.

6.
Sci Rep ; 12(1): 71, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34997078

RESUMEN

Ants have not been considered important in the process of vertebrate carrion decomposition, but a recent literature review reported over 150 carrion-visiting ant species. Though many ant species have been observed to remove carrion tissue and consume carrion-exuded liquids, the significance of ant recruitment to vertebrate carrion is poorly understood. We conducted a combination of field and laboratory experiments to quantify red imported fire ant recruitment to rodent carrion and determine whether consuming rodent carrion is beneficial to ant colony performance. In the field, 100% of rat carcasses were rapidly colonized by fire ants at high abundances. In our laboratory experiment, the performance of mice-fed fire ant colonies was poor when compared to colonies that were fed mice and insects or insects only. Our results suggest that there is a discrepancy between high levels of fire ant recruitment to vertebrate carrion and the poor colony performance when fed carrion. We hypothesize that fire ants are attracted to vertebrate carrion not because it is a high-quality food, but rather because it hosts large numbers of other invertebrates that can serve as prey for fire ants, potentially showcasing an interesting case of tritrophic interaction in carrion ecology.


Asunto(s)
Hormigas/fisiología , Cadáver , Conducta Alimentaria , Valor Nutritivo , Conducta Predatoria , Animales , Ratones , Ratas , Factores de Tiempo
8.
J Med Entomol ; 58(4): 1654-1662, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-33970239

RESUMEN

A basic tenet of forensic entomology is development data of an insect can be used to predict the time of colonization (TOC) by insect specimens collected from remains, and this prediction is related to the time of death and/or time of placement (TOP). However, few datasets have been evaluated to determine their accuracy or precision. The black soldier fly, Hermetia illucens (L.) (Diptera: Stratiomyidae) is recognized as an insect of forensic importance. This study examined the accuracy and precision of several development datasets for the black soldier fly by estimating the TOP of five sets of human and three sets of swine remains in San Marcos and College Station, TX, respectively. Data generated from this study indicate only one of these datasets consistently (time-to-prepupae 52%; time-to-eclosion 75%) produced TOP estimations that occurred within a day of the actual TOP of the remains. It is unknown if the precolonization interval (PreCI) of this species is long, but it has been observed that the species can colonize within 6 d after death. This assumption remains untested by validation studies. Accounting for this PreCI improved accuracy for the time-to-prepupae group, but reduced accuracy in the time-to-eclosion group. The findings presented here highlight a need for detailed, forensic-based development data for the black soldier fly that can reliably and accurately be used in casework. Finally, this study outlines the need for a basic understanding of the timing of resource utilization (i.e., duration of the PreCI) for forensically relevant taxa so that reasonable corrections may be made to TOC as related to minimum postmortem interval (mPMI) estimates.


Asunto(s)
Dípteros/crecimiento & desarrollo , Entomología Forense , Animales , Exactitud de los Datos , Conjuntos de Datos como Asunto , Humanos , Porcinos
9.
BMC Biol ; 19(1): 41, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33750380

RESUMEN

BACKGROUND: The stable fly, Stomoxys calcitrans, is a major blood-feeding pest of livestock that has near worldwide distribution, causing an annual cost of over $2 billion for control and product loss in the USA alone. Control of these flies has been limited to increased sanitary management practices and insecticide application for suppressing larval stages. Few genetic and molecular resources are available to help in developing novel methods for controlling stable flies. RESULTS: This study examines stable fly biology by utilizing a combination of high-quality genome sequencing and RNA-Seq analyses targeting multiple developmental stages and tissues. In conjunction, 1600 genes were manually curated to characterize genetic features related to stable fly reproduction, vector host interactions, host-microbe dynamics, and putative targets for control. Most notable was characterization of genes associated with reproduction and identification of expanded gene families with functional associations to vision, chemosensation, immunity, and metabolic detoxification pathways. CONCLUSIONS: The combined sequencing, assembly, and curation of the male stable fly genome followed by RNA-Seq and downstream analyses provide insights necessary to understand the biology of this important pest. These resources and new data will provide the groundwork for expanding the tools available to control stable fly infestations. The close relationship of Stomoxys to other blood-feeding (horn flies and Glossina) and non-blood-feeding flies (house flies, medflies, Drosophila) will facilitate understanding of the evolutionary processes associated with development of blood feeding among the Cyclorrhapha.


Asunto(s)
Genoma de los Insectos , Interacciones Huésped-Parásitos/genética , Control de Insectos , Muscidae/genética , Animales , Reproducción/genética
10.
Sci Rep ; 10(1): 15728, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32978490

RESUMEN

The production of male and female offspring is often determined by the presence of specific sex chromosomes which control sex-specific expression, and sex chromosomes evolve through reduced recombination and specialized gene content. Here we present the genomes of Chrysomya rufifacies, a monogenic blow fly (females produce female or male offspring, exclusively) by separately sequencing and assembling each type of female and the male. The genomes (> 25X coverage) do not appear to have any sex-linked Muller F elements (typical for many Diptera) and exhibit little differentiation between groups supporting the morphological assessments of C. rufifacies homomorphic chromosomes. Males in this species are associated with a unimodal coverage distribution while females exhibit bimodal coverage distributions, suggesting a potential difference in genomic architecture. The presence of the individual-sex draft genomes herein provides new clues regarding the origination and evolution of the diverse sex-determining mechanisms observed within Diptera. Additional genomic analysis of sex chromosomes and sex-determining genes of other blow flies will allow a refined evolutionary understanding of how flies with a typical X/Y heterogametic amphogeny (male and female offspring in similar ratios) sex determination systems evolved into one with a dominant factor that results in single sex progeny in a chromosomally monomorphic system.


Asunto(s)
Dípteros/genética , Cromosomas Sexuales/genética , Secuenciación Completa del Genoma/veterinaria , Animales , Femenino , Tamaño del Genoma , Masculino , Análisis para Determinación del Sexo , Procesos de Determinación del Sexo
11.
J Med Entomol ; 57(6): 1686-1693, 2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-32785585

RESUMEN

Forensic entomologists rely on laboratory growth data to estimate the time of colonization on human remains thus extrapolating a minimum postmortem interval (PMI) if assumptions are satisfied. The flesh fly Blaesoxipha plinthopyga (Wiedemann) is one species that occurs in casework in Idaho, Texas, and central California. Because of the few laboratory studies on the development of this fly, the following study was conducted to determine if different substrates impact immature development of the species. In this study, flies were reared on different substrates that are likely to be encountered at indoor and outdoor scenes (Wet Sand, Dry Sand, Clothes [Polyester fibers], and Carpet [Polypropylene fibers]) to determine the influence of substrate on larval, intrapuparial, and total immature development times at 25°C, 50% RH, and 14:10 (L:D) h cycle. The results revealed that substrate significantly affected minimum immature development times without affecting the sexes differently; though a female bias in sex ratio was observed consistently. Average minimum larval developmental times were 160-179 h with a significantly faster development in Carpet than in Clothes. Similarly, average minimum intrapuparial developmental times were 331-352 h; fastest on Carpet and the slowest in Dry Sand. For this species, it may be important to consider the substrates encountered at a death scene as they may affect the development of B. plinthopyga (Wiedemann) in casework by up to 29 h at 25°C and 50% humidity. These effects will also be important to consider when planning future development studies with the species.


Asunto(s)
Entomología Forense , Sarcofágidos/crecimiento & desarrollo , Animales , Vestuario , Dieta , Pisos y Cubiertas de Piso , Larva/crecimiento & desarrollo , Arena
12.
J Forensic Sci ; 65(5): 1579-1587, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32501598

RESUMEN

Blow flies (Calliphoridae) are important medically and economically and are commonly used in forensics as temporal markers in death investigations. While phenotypic traits in adult flies can be sexually dimorphic, sex identification in immatures is difficult. Consequently, little is known about how sex may result in developmental disparities among sexes even though there are indications that they may be important in some instances. Since genetic mechanisms for sex are well studied in model flies and species of agricultural and medical importance, we exploit the sex-specifically spliced genes transformer (tra) and doublesex (dsx) in the sex determination pathway to optimize a sex identification assay for immatures. Using known primer sets for tra and with a novel one for dsx, we develop PCR assays for identifying sex in four forensically relevant Calliphoridae species: Lucilia sericata (Meigen), Lucilia cuprina (Wiedemann), Cochliomyia macellaria (Fabricius), and Chrysomya rufifacies (Macquart) and evaluated their performance. Band detection rates were found to range from 71 to 100%, call rates ranged from 90 to 100%, and no error was found when bands could be called. Such information is informative for purposes of testimony and in preparation for development studies. The developed assays will assist in further differentiating sexually dimorphic differences in development of the Calliphoridae and aid in more accurately estimating insect age when age predictive markers (size, development time, molecular expression) are sexually dimorphic.


Asunto(s)
Empalme Alternativo , Calliphoridae/genética , Procesos de Determinación del Sexo , Animales , Entomología Forense
13.
Genes (Basel) ; 11(2)2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-32093067

RESUMEN

Genome size varies widely across organisms yet has not been found to be related to organismal complexity in eukaryotes. While there is no evidence for a relationship with complexity, there is evidence to suggest that other phenotypic characteristics, such as nucleus size and cell-cycle time, are associated with genome size, body size, and development rate. However, what is unknown is how the selection for divergent phenotypic traits may indirectly affect genome size. Drosophila melanogaster were selected for small and large body size for up to 220 generations, while Cochliomyia macellaria were selected for 32 generations for fast and slow development. Size in D. melanogaster significantly changed in terms of both cell-count and genome size in isolines, but only the cell-count changed in lines which were maintained at larger effective population sizes. Larger genome sizes only occurred in a subset of D. melanogaster isolines originated from flies selected for their large body size. Selection for development time did not change average genome size yet decreased the within-population variation in genome size with increasing generations of selection. This decrease in variation and convergence on a similar mean genome size was not in correspondence with phenotypic variation and suggests stabilizing selection on genome size in laboratory conditions.


Asunto(s)
Variación Biológica Poblacional/genética , Dípteros/genética , Tamaño del Genoma/genética , Animales , Tamaño Corporal/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Variación Genética/genética , Genoma/genética , Fenotipo , Densidad de Población , Selección Genética/genética
14.
J Med Entomol ; 57(3): 697-704, 2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-31909421

RESUMEN

Flesh flies are major primary consumers of carrion and are commonly found on human remains. Due to this latter feeding habit, their development rates can be used to provide temporal information in forensic investigations. This is usually done by referencing published flesh fly development datasets. Flesh flies are typically assumed to be strictly viviparous and datasets reporting their development rates therefore start at the first larval instar. However, an increasing number of studies has identified oviposition by flesh flies, including the forensically relevant species Blaesoxipha plinthopyga Wiedemann. To assess the impact of egg-laying behavior on casework, oviparity rates and time before larval hatching were assessed under controlled laboratory conditions that reflect common casework conditions in Harris County, Texas. We demonstrated systematic deposition of viable eggs but at a very variable rate between samples. Similarly, the duration between oviposition and larval hatching was highly variable, with some eggs taking more than a day to hatch after deposition. These results highlight the need to account for embryonic development in forensic investigations including B. plinthopyga and advocates for the re-evaluation of the assumed strict viviparity of the Sarcophagidae.


Asunto(s)
Entomología Forense , Oviposición , Sarcofágidos/fisiología , Viviparidad de Animales no Mamíferos , Animales , Femenino , Larva , Masculino , Oviparidad
15.
Insect Sci ; 27(1): 113-121, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29790281

RESUMEN

The tawny crazy ant (Nylanderia fulva) is a new invasive pest in the United States. At present, its management mainly relies on the use of synthetic insecticides, which are generally ineffective at producing lasting control of the pest, necessitating alternative environmentally friendly measures. In this study, we evaluated the feasibility of gene silencing to control this ant species. Six housekeeping genes encoding actin (NfActin), coatomer subunit ß (NfCOPß), arginine kinase (NfArgK), and V-type proton ATPase subunits A (NfvATPaseA), B (NfvATPaseB) and E (NfvATPaseE) were cloned. Phylogenetic analysis revealed high sequence similarity to homologs from other ant species, particularly the Florida carpenter ant (Camponotus floridanus). To silence these genes, vector L4440 was used to generate six specific RNAi constructs for bacterial expression. Heat-inactivated, dsRNA-expressing Escherichia coli were incorporated into artificial diet. Worker ants exhibited reduced endogenous gene expression after feeding on such diet for 9 d. However, only ingestion of dsRNAs of NfCOPß (a gene involved in protein trafficking) and NfArgK (a cellular energy reserve regulatory gene in invertebrates) caused modest but significantly higher ant mortality than the control. These results suggest that bacterially expressed dsRNA can be orally delivered to ant cells as a mean to target its vulnerabilities. Improved efficacy is necessary for the RNAi-based approach to be useful in tawny crazy ant management.


Asunto(s)
Hormigas , Genes de Insecto , Control de Insectos/métodos , Interferencia de ARN , Animales , Hormigas/genética
16.
Int J Legal Med ; 134(2): 793-810, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31209558

RESUMEN

Most studies of decomposition in forensic entomology and taphonomy have used non-human cadavers. Following the recommendation of using domestic pig cadavers as analogues for humans in forensic entomology in the 1980s, pigs became the most frequently used model cadavers in forensic sciences. They have shaped our understanding of how large vertebrate cadavers decompose in, for example, various environments, seasons and after various ante- or postmortem cadaver modifications. They have also been used to demonstrate the feasibility of several new or well-established forensic techniques. The advent of outdoor human taphonomy facilities enabled experimental comparisons of decomposition between pig and human cadavers. Recent comparisons challenged the pig-as-analogue claim in entomology and taphonomy research. In this review, we discuss in a broad methodological context the advantages and disadvantages of pig and human cadavers for forensic research and rebut the critique of pigs as analogues for humans. We conclude that experiments using human cadaver analogues (i.e. pig carcasses) are easier to replicate and more practical for controlling confounding factors than studies based solely on humans and, therefore, are likely to remain our primary epistemic source of forensic knowledge for the immediate future. We supplement these considerations with new guidelines for model cadaver choice in forensic science research.


Asunto(s)
Entomología Forense/métodos , Ciencias Forenses/tendencias , Modelos Animales , Proyectos de Investigación/tendencias , Porcinos , Animales , Cadáver , Historia del Siglo XIX , Historia del Siglo XX , Historia del Siglo XXI , Humanos
17.
J Therm Biol ; 85: 102405, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31657745

RESUMEN

Determining the thermal tolerance of an organism is important when assessing its activity time and survival rate in a given environment. However, thermal tolerance is not a static trait and may be influenced by a number of environmental and organismal factors. We report the results of three experiments investigating the effects of environmental temperature, exposure duration, age, sex, and nutrient availability on the upper thermal tolerance of the adult secondary screwworm, Cochliomyia macellaria. The probability of knockdown and survival was determined using a static method for different environmental temperatures (22, 40, 42, 44, or 45 °C), exposure durations (1, 2, 4, or 6 h), and nutrient availabilities (no food or water, water only, or both food and water) for both sexes and two age classes (young = 7-9 days post pupal emergence, old = 10-12 days post pupal emergence). In general, environmental temperature and exposure duration had the greatest effects on both the probability of knockdown and survival. As temperature or duration increased, the probability of knockdown increased while the probability of survival decreased. The availability of nutrients (water only or food and water) increased thermal tolerance at moderate temperatures (42 and 44 °C), but had no effect at 45 °C. Female flies were more thermally tolerant than males, regardless of nutrient availability. And age exhibited negligible effects on the probabilities of knockdown or survival, regardless of nutrient availability. These data show multiple environmental factors affected the thermal tolerance of C. macellaria. Thus, such aspects of basic thermal biology should feature more prominently in applied fields using blow flies, including but not limited to forensic entomology, disease ecology, and pollination ecology.


Asunto(s)
Dípteros/fisiología , Termotolerancia , Animales , Femenino , Masculino , Temperatura
18.
Ecol Evol ; 9(15): 8690-8701, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31410272

RESUMEN

Effects of intraguild predation (IGP) on omnivores and detritivores are relatively understudied when compared to work on predator guilds. Functional genetic work in IGP is even more limited, but its application can help answer a range of questions related to ultimate and proximate causes of this behavior. Here, we integrate behavioral assays and transcriptomic analysis of facultative predation in a blow fly (Diptera: Calliphoridae) to evaluate the prevalence, effect, and correlated gene expression of facultative predation by the invasive species Chrysomya rufifacies. Field work observing donated human cadavers indicated facultative predation by C. rufifacies on the native blow fly Cochliomyia macellaria was rare under undisturbed conditions, owing in part to spatial segregation between species. Laboratory assays under conditions of starvation showed predation had a direct fitness benefit (i.e., survival) to the predator. As a genome is not available for C. rufifacies, a de novo transcriptome was developed and annotated using sequence similarity to Drosophila melanogaster. Under a variety of assembly parameters, several genes were identified as being differentially expressed between predators and nonpredators of this species, including genes involved in cell-to-cell signaling, osmotic regulation, starvation responses, and dopamine regulation. Results of this work were integrated to develop a model of the processes and genetic regulation controlling facultative predation.

19.
BMC Genomics ; 20(Suppl 5): 425, 2019 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-31167652

RESUMEN

BACKGROUND: A popular strategy to study alternative splicing in non-model organisms starts from sequencing the entire transcriptome, then assembling the reads by using de novo transcriptome assembly algorithms to obtain predicted transcripts. A similarity search algorithm is then applied to a related organism to infer possible function of these predicted transcripts. While some of these predictions may be inaccurate and transcripts with low coverage are often missed, we observe that it is possible to obtain a more complete set of transcripts to facilitate possible functional assignments by starting the search from the intermediate de Bruijn graph that contains all branching possibilities. RESULTS: We develop an algorithm to extract similar transcripts in a related organism by starting the search from the de Bruijn graph that represents the transcriptome instead of from predicted transcripts. We show that our algorithm is able to recover more similar transcripts than existing algorithms, with large improvements in obtaining longer transcripts and a finer resolution of isoforms. We apply our algorithm to study salt and waterlogging tolerance in two Melilotus species by constructing new RNA-Seq libraries. CONCLUSIONS: We have developed an algorithm to identify paths in the de Bruijn graph that correspond to similar transcripts in a related organism directly. Our strategy bypasses the transcript prediction step in RNA-Seq data and makes use of support from evolutionary information.


Asunto(s)
Algoritmos , Biología Computacional/métodos , Gráficos por Computador , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Melilotus/genética , Proteínas de Plantas/genética , Tolerancia a la Sal , Empalme Alternativo , Regulación de la Expresión Génica de las Plantas , Melilotus/clasificación , Análisis de Secuencia de ARN , Transcriptoma , Agua/metabolismo
20.
PLoS One ; 14(4): e0213829, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30986212

RESUMEN

BACKGROUND: The postmortem microbiome can provide valuable information to a death investigation and to the human health of the once living. Microbiome sequencing produces, in general, large multi-dimensional datasets that can be difficult to analyze and interpret. Machine learning methods can be useful in overcoming this analytical challenge. However, different methods employ distinct strategies to handle complex datasets. It is unclear whether one method is more appropriate than others for modeling postmortem microbiomes and their ability to predict attributes of interest in death investigations, which require understanding of how the microbial communities change after death and may represent those of the once living host. METHODS AND FINDINGS: Postmortem microbiomes were collected by swabbing five anatomical areas during routine death investigation, sequenced and analyzed from 188 death cases. Three machine learning methods (boosted algorithms, random forests, and neural networks) were compared with respect to their abilities to predict case attributes: postmortem interval (PMI), location of death, and manner of death. Accuracy depended on the method used, the numbers of anatomical areas analyzed, and the predicted attribute of death. CONCLUSIONS: All algorithms performed well but with distinct features to their performance. Xgboost often produced the most accurate predictions but may also be more prone to overfitting. Random forest was the most stable across predictions that included more anatomic areas. Analysis of postmortem microbiota from more than three anatomic areas appears to yield limited returns on accuracy, with the eyes and rectum providing the most useful information correlating with circumstances of death in most cases for this dataset.


Asunto(s)
Autopsia/métodos , Aprendizaje Automático , Microbiota/fisiología , Cambios Post Mortem , Análisis de Secuencia de ADN/métodos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Estudios Transversales , ADN de Archaea/aislamiento & purificación , ADN Bacteriano/aislamiento & purificación , Conjuntos de Datos como Asunto , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , ARN Ribosómico 16S/genética , Factores de Tiempo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...