Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 159(19)2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37982482

RESUMEN

The ability to synthetically tune the ligand frameworks of redox-active molecules is of critical importance to the economy of solar fuels because manipulating their redox properties can afford control over the operating potentials of sustained electrocatalytic or photoelectrocatalytic processes. The electronic and steric properties of 2,2':6',2″-terpyridine (Terpy) ligand frameworks can be tuned by functional group substitution on ligand backbones, and these correlate strongly to their Hammett parameters. The synthesis of a new series of tridentate meridional ligands of 2,4,6-trisubstituted pyridines that engineers the ability to finely tune the redox potentials of cobalt complexes to more positive potentials than that of their Terpy analogs is achieved by aryl-functionalizing at the four-position and by including isoquinoline at the two- and six-positions of pyridine (Aryl-DiQ). Their cobalt complex syntheses, their electronic properties, and their catalytic activity for carbon dioxide (CO2) reduction are reported and compared to their Terpy analogs. The cobalt derivatives generally experience a positive shift in their redox features relative to the Terpy-based analogs, covering a complementary potential range. Although those evaluated fail to produce any quantifiable products for the reduction of CO2 and suffer from long-term instability, these results suggest possible alternate strategies for stabilizing these compounds during catalysis. We speculate that lower equilibrium association constants to the cobalt center are intrinsic to these ligands, which originate from a steric interaction between protons on the pyridine and isoquinoline moieties. Nevertheless, the new Aryl-DiQ ligand framework has been engineered to selectively tune homoleptic cobalt complexes' redox potentials.

2.
Inorg Chem ; 60(13): 9956-9969, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34160216

RESUMEN

Homoleptic transition-metal complexes of 2,2':6',2″-terpyridine (terpy) and substituted derivatives of the form [M(R-terpy)2]2+ display a wide range of redox potentials that correlate well to the Hammett parameter of the terpy substituents. Less is known about the impact of incorporating a phenyl spacer between the functional group responsible for controlling the electron density of terpy and how that translates to metal complexes of the form [M(4'-aryl-terpy)2]2+, where M = Mn, Fe, Co, Ni, and Zn. Herein, we report our studies on these complexes revealed a good correlation of redox potentials of both metal- and ligand-centered events with the Hammett parameters of the aryl substituents, regardless of aryl-substitution pattern (i.e., the presence of multiple functional groups, combinations of withdrawing and donating functional groups). The phenyl spacer results in 60-80% attenuation of electron density as compared to the 4'-substituted terpy analogue, depending on the metal and redox couple analyzed. Density functional theory calculations performed on a simple model system revealed a strong correlation between the Hammett parameters and lowest unoccupied molecular orbital energies of the corresponding substituted pyridine models, thus serving as an inexpensive predictive tool when coupled with electrochemical data. Overall, these data suggest that such ligand modifications may be used in combination with previous approaches to further fine-tune the redox potentials of homoleptic transition-metal complexes, which may have applications in photochemical and electrochemical catalytic processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...