Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Neurosci ; 15(5): 713-21, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22466506

RESUMEN

The Huntington's disease gene product, huntingtin, is indispensable for neural tube formation, but its role is obscure. We studied neurulation in htt-null embryonic stem cells and htt-morpholino zebrafish embryos and found a previously unknown, evolutionarily recent function for this ancient protein. We found that htt was essential for homotypic interactions between neuroepithelial cells; it permitted neurulation and rosette formation by regulating metalloprotease ADAM10 activity and Ncadherin cleavage. This function was embedded in the N terminus of htt and was phenocopied by treatment of htt knockdown zebrafish with an ADAM10 inhibitor. Notably, in htt-null cells, reversion of the rosetteless phenotype occurred only with expression of evolutionarily recent htt heterologues from deuterostome organisms. Conversely, all of the heterologues that we tested, including htt from Drosophila melanogaster and Dictyostelium discoideum, exhibited anti-apoptotic activity. Thus, anti-apoptosis may have been one of htt's ancestral function(s), but, in deuterostomes, htt evolved to acquire a unique regulatory activity for controlling neural adhesion via ADAM10-Ncadherin, with implications for brain evolution and development.


Asunto(s)
Proteínas ADAM/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Evolución Biológica , Cadherinas/metabolismo , Adhesión Celular/fisiología , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Células Neuroepiteliales/fisiología , Neuronas/fisiología , Proteínas Nucleares/metabolismo , Proteínas ADAM/antagonistas & inhibidores , Proteínas ADAM/genética , Proteína ADAM10 , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/genética , Análisis de Varianza , Animales , Animales Modificados Genéticamente , Apoptosis/efectos de los fármacos , Apoptosis/genética , Tipificación del Cuerpo/efectos de los fármacos , Tipificación del Cuerpo/genética , Encéfalo/citología , Encéfalo/efectos de los fármacos , Encéfalo/embriología , Encéfalo/metabolismo , Cadherinas/genética , Adhesión Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Células Cultivadas , Ventrículos Cerebrales/citología , Ventrículos Cerebrales/embriología , Dictyostelium , Dipéptidos/farmacología , Homólogo 1 de la Proteína Discs Large , Drosophila melanogaster , Embrión de Mamíferos , Embrión no Mamífero , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Guanilato-Quinasas/genética , Guanilato-Quinasas/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Proteína Huntingtina , Ácidos Hidroxámicos/farmacología , Inmunoprecipitación , Proteínas de Filamentos Intermediarios/genética , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Ratones , Morfolinas/farmacología , Mutación/genética , Factores de Transcripción NFI/metabolismo , Proteínas del Tejido Nervioso/genética
2.
Brain Pathol ; 18(2): 225-38, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18093249

RESUMEN

One cardinal feature of Huntington's disease (HD) is the degeneration of striatal neurons, whose survival greatly depends on the binding of cortical brain-derived neurotrophic factor (BDNF) with high-affinity (TrkB) and low-affinity neurotrophin receptors [p75 pan-neurotrophin receptor (p75(NTR))]. With a few exceptions, results obtained in HD mouse models demonstrate a reduction in cortical BDNF mRNA and protein, although autopsy data from a limited number of human HD cortices are conflicting. These studies indicate the presence of defects in cortical BDNF gene transcription and transport to striatum. We provide new evidence indicating a significant reduction in BDNF mRNA and protein in the cortex of 20 HD subjects in comparison with 17 controls, which supports the hypothesis of impaired BDNF production in human HD cortex. Analyses of the BDNF isoforms show that transcription from BDNF promoter II and IV is down-regulated in human HD cortex from an early symptomatic stage. We also found that TrkB mRNA levels are reduced in caudate tissue but not in the cortex, whereas the mRNA levels of T-Shc (a truncated TrkB isoform) and p75(NTR) are increased in the caudate. This indicates that, in addition to the reduction in BDNF mRNA, there is also unbalanced neurotrophic receptor signaling in HD.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Encéfalo/metabolismo , Enfermedad de Huntington/patología , Receptor trkB/metabolismo , Anciano , Encéfalo/patología , Factor Neurotrófico Derivado del Encéfalo/genética , Ensayo de Inmunoadsorción Enzimática/métodos , Femenino , Humanos , Enfermedad de Huntington/metabolismo , Masculino , Persona de Mediana Edad , Cambios Post Mortem , Receptor de Factor de Crecimiento Nervioso/genética , Receptor de Factor de Crecimiento Nervioso/metabolismo , Receptor trkB/genética , Índice de Severidad de la Enfermedad
3.
J Biol Chem ; 283(9): 5780-9, 2008 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-18156184

RESUMEN

Dysfunctions of Ca2+ homeostasis and of mitochondria have been studied in immortalized striatal cells from a commonly used Huntington disease mouse model. Transcriptional changes in the components of the phosphatidylinositol cycle and in the receptors for myo-inositol trisphosphate-linked agonists have been found in the cells and in the striatum of the parent Huntington disease mouse. The overall result of the changes is to delay myo-inositol trisphosphate production and to decrease basal Ca2+ in mutant cells. When tested directly, mitochondria in mutant cells behave nearly normally, but are unable to handle large Ca2+ loads. This appears to be due to the increased Ca2+ sensitivity of the permeability transition pore, which dissipates the membrane potential, prompting the release of accumulated Ca2+. Harmful reactive oxygen species, which are produced by defective mitochondria and may in turn stress them, increase in mutant cells, particularly if the damage to mitochondria is artificially exacerbated, for instance with complex II inhibitors. Mitochondria in mutant cells are thus peculiarly vulnerable to stresses induced by Ca2+ and reactive oxygen species. The observed decrease of cell Ca2+ could be a compensatory attempt to prevent the Ca2+ stress that would irreversibly damage mitochondria and eventually lead to cell death.


Asunto(s)
Calcio/metabolismo , Homeostasis , Enfermedad de Huntington/metabolismo , Mitocondrias/metabolismo , Neuronas Motoras/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Muerte Celular/genética , Línea Celular Transformada , Permeabilidad de la Membrana Celular/genética , Modelos Animales de Enfermedad , Homeostasis/genética , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Fosfatos de Inositol/genética , Fosfatos de Inositol/metabolismo , Ratones , Mitocondrias/genética , Mitocondrias/patología , Neuronas Motoras/patología , Mutación , Estrés Oxidativo/genética
4.
Mol Biol Evol ; 25(2): 330-8, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18048403

RESUMEN

Huntingtin is a completely soluble 3,144 amino acid (aa) protein characterized by the presence of an amino-terminal polymorphic polyglutamine (polyQ) tract, whose aberrant expansion causes the progressively neurodegenerative Huntington's disease (HD). Biological evidence indicates that huntingtin (htt) is beneficial to cells (particularly to brain neurons) and that loss of its neuronal function may contribute to HD. The exact protein domains involved in its neuroprotective function are unknown. Evolutionary analyses of htt primary aa have so far been limited to a few species, but its thorough assessment may help to clarify the functions emerging during evolution. We made an extensive comparative analysis of the available htt protein homologues from different organisms along the metazoan phylogenetic tree and defined the presence of 3 different conservative blocks corresponding to human htt aa 1-386 (htt1), 683-1,586 (htt2), and 2,437-3,078 (htt3), in which HEAT (Huntingtin, Elongator factor3, the regulatory A subunit of protein phosphatase 2A, and TOR1) repeats are well conserved. We also describe the cloning and sequencing of sea urchin htt mRNA, the oldest deuterostome homologue so far available. Multiple alignment shows the first appearance of a primitive polyQ in sea urchin, which predates an ancestral polyQ sequence in a nonchordate environment and defines the polyQ characteristic as being typical of the deuterostome branch. The fact that glutamines have conserved positions in deuterostomes and the polyQ size increases during evolution suggests that the protein has a possibly Q-dependent role. Finally, we report an evident relaxing constraint of the N-terminal block in Ciona and drosophilids that correlates with the absence of polyQ and which may indicate that the N-terminal portion of htt has evolved different functions in Ciona and protostomes.


Asunto(s)
Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Péptidos/genética , Erizos de Mar/genética , Secuencia de Aminoácidos , Animales , Evolución Molecular , Humanos , Proteína Huntingtina , Datos de Secuencia Molecular , Filogenia , Homología de Secuencia de Aminoácido
5.
BMC Dev Biol ; 7: 127, 2007 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-18005438

RESUMEN

BACKGROUND: Huntington's disease is an inherited neurodegenerative disorder that is caused by the expansion of an N-terminal polyQ stretch in the huntingtin protein. In order to investigate the hypothesis that huntingtin was already involved in development of the nervous system in the last common ancestor of chordates, we isolated and characterised the huntingtin homologue from the amphioxus Branchiostoma floridae. In the present paper the amphioxus general term must be referred to Branchiostoma floridae. RESULTS: In this report, we show that the exon-intron organization of the amphioxus huntingtin gene is highly conserved with that of other vertebrates species. The AmphiHtt protein has two glutamine residues in the position of the typical vertebrate polyQ tract. Sequence conservation is greater along the entire length of the protein than in a previously identified Ciona huntingtin. The first three N-terminal HEAT repeats are highly conserved in vertebrates and amphioxus, although exon rearrangement has occurred in this region. AmphiHtt expression is detectable by in situ hybridization starting from the early neurula stage, where it is found in cells of the neural plate. At later stages, it is retained in the neural compartment but also it appears in limited and well-defined groups of non-neural cells. At subsequent larval stages, AmphiHtt expression is detected in the neural tube, with the strongest signal being present in the most anterior part. CONCLUSION: The cloning of amphioxus huntingtin allows to infer that the polyQ in huntingtin was already present 540 million years ago and provides a further element for the study of huntingtin function and its evolution along the deuterostome branch.


Asunto(s)
Cordados no Vertebrados/genética , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Animales , Cordados no Vertebrados/crecimiento & desarrollo , Secuencia Conservada , ADN Complementario , Humanos , Proteína Huntingtina , Péptidos/genética , Reacción en Cadena de la Polimerasa , Homología de Secuencia de Aminoácido
6.
J Biol Chem ; 282(34): 24554-62, 2007 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-17565993

RESUMEN

Increased levels of the repressor element 1/neuron restrictive silencer element (RE1/NRSE) silencing activity promoter, and a consequent reduction in the transcription of many RE1/NRSE-bearing neuronal genes, including brain-derived neurotrophic factor (BDNF), have been demonstrated in Huntington disease (HD) and represent one possible effector of its selective neuronal vulnerability. Restoring the expression levels of neuronal genes in diseased neurons therefore seems to be an attractive therapeutic approach. To this end, we have developed a cell-based reporter assay for monitoring RE1/NRSE silencing activity and validated it by genetically inactivating the RE1/NRSE or pharmacologically stimulating global transcription. In a pilot compound screen, we identified three closely related structural analogues that up-regulate reporter expression at low nanomolar concentrations, and follow-up studies have shown that they efficaciously increase endogenous BDNF levels in HD cells. Moreover, one of the compounds increases the viability of HD cells. Our findings suggest a new avenue for the development of drugs for HD and other neurodegenerative disorders based on the pharmacological up-regulation of the production of the neuronal survival factor BDNF and of other RE1/NRSE-regulated neuronal genes.


Asunto(s)
Proteínas del Tejido Nervioso/fisiología , Proteínas Nucleares/fisiología , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Supervivencia Celular , Relación Dosis-Respuesta a Droga , Ensayo de Inmunoadsorción Enzimática , Regulación de la Expresión Génica , Silenciador del Gen , Proteína Huntingtina , Inmunohistoquímica , Luciferasas/metabolismo , Modelos Químicos , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Proteínas Nucleares/metabolismo , Péptidos/química , Ratas , Factores de Transcripción/metabolismo
7.
J Neurosci ; 27(26): 6972-83, 2007 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-17596446

RESUMEN

Huntingtin is a protein that is mutated in Huntington's disease (HD), a dominant inherited neurodegenerative disorder. We previously proposed that, in addition to the gained toxic activity of the mutant protein, selective molecular dysfunctions in HD may represent the consequences of the loss of wild-type protein activity. We first reported that wild-type huntingtin positively affects the transcription of the brain-derived neurotrophic factor (BDNF) gene, a cortically derived survival factor for the striatal neurons that are mainly affected in the disease. Mutation in huntingtin decreases BDNF gene transcription. One mechanism involves the activation of repressor element 1/neuron-restrictive silencer element (RE1/NRSE) located within the BDNF promoter. We now show that increased binding of the RE1 silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) repressor occurs at multiple genomic RE1/NRSE loci in HD cells, in animal models, and in postmortem brains, resulting in a decrease of RE1/NRSE-mediated gene transcription. The same molecular phenotype is produced in cells and brain tissue depleted of endogenous huntingtin, thereby directly validating the loss-of-function hypothesis of HD. Through a ChIP (chromatin immunoprecipitation)-on-chip approach, we examined occupancy of multiple REST/NRSF target genes in the postmortem HD brain, providing the first example of the application of this technology to neurodegenerative diseases. Finally, we show that attenuation of REST/NRSF binding restores BDNF levels, suggesting that relief of REST/NRSF mediated repression can restore aberrant neuronal gene transcription in HD.


Asunto(s)
Química Encefálica/genética , Regulación de la Expresión Génica/genética , Predisposición Genética a la Enfermedad/genética , Enfermedad de Huntington/genética , Proteínas Represoras/genética , Factores de Transcripción/genética , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Línea Celular Transformada , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Cuerpo Estriado/fisiopatología , Regulación hacia Abajo/genética , Humanos , Proteína Huntingtina , Inmunoprecipitación/métodos , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Neuronas/patología , Proteínas Nucleares/genética , Unión Proteica/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo
8.
BMC Genomics ; 7: 288, 2006 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-17092333

RESUMEN

BACKGROUND: To gain insight into the evolutionary features of the huntingtin (htt) gene in Chordata, we have sequenced and characterized the full-length htt mRNA in the ascidian Ciona intestinalis, a basal chordate emerging as new invertebrate model organism. Moreover, taking advantage of the availability of genomic and EST sequences, the htt gene structure of a number of chordate species, including the cogeneric ascidian Ciona savignyi, and the vertebrates Xenopus and Gallus was reconstructed. RESULTS: The C. intestinalis htt transcript exhibits some peculiar features, such as spliced leader trans-splicing in the 98 nt-long 5' untranslated region (UTR), an alternative splicing in the coding region, eight alternative polyadenylation sites, and no similarities of both 5' and 3'UTRs compared to homologs of the cogeneric C. savignyi. The predicted protein is 2946 amino acids long, shorter than its vertebrate homologs, and lacks the polyQ and the polyP stretches found in the the N-terminal regions of mammalian homologs. The exon-intron organization of the htt gene is almost identical among vertebrates, and significantly conserved between Ciona and vertebrates, allowing us to hypothesize an ancestral chordate gene consisting of at least 40 coding exons. CONCLUSION: During chordate diversification, events of gain/loss, sliding, phase changes, and expansion of introns occurred in both vertebrate and ascidian lineages predominantly in the 5'-half of the htt gene, where there is also evidence of lineage-specific evolutionary dynamics in vertebrates. On the contrary, the 3'-half of the gene is highly conserved in all chordates at the level of both gene structure and protein sequence. Between the two Ciona species, a fast evolutionary rate and/or an early divergence time is suggested by the absence of significant similarity between UTRs, protein divergence comparable to that observed between mammals and fishes, and different distribution of repetitive elements.


Asunto(s)
Cordados/genética , Ciona intestinalis/genética , Evolución Molecular , Genes , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Regiones no Traducidas 3'/genética , Regiones no Traducidas 5'/genética , Secuencia de Aminoácidos , Animales , Pollos/genética , Exones/genética , Etiquetas de Secuencia Expresada , Humanos , Proteína Huntingtina , Datos de Secuencia Molecular , Péptidos/genética , Filogenia , Poli A/genética , ARN Mensajero/genética , ARN Lider Empalmado/genética , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Transcripción Genética , Vertebrados/genética , Xenopus laevis/genética
9.
Neurobiol Dis ; 24(2): 274-9, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16905325

RESUMEN

Huntington's disease (HD) is a late-onset, autosomal dominant neurodegenerative disease caused by a CAG trinucleotide expansion. The number of repeats on the HD chromosome explains most of the variability in age of onset, but genetic factors other than the HD gene are responsible for part of the residual variance. Based on the role played by the brain derived neurotrophic factor (BDNF) in neurodysfunction and neurodegeneration in HD, we searched for novel polymorphisms in the neuron restrictive silencer element located in the BDNF promoter. Then, the effect of the Val66Met variant in determining age of onset was tested in a large sample of HD carriers by using a multivariate regression approach. The CAG repeat number accounted for 62% of the variance. After correction for the predominant effect of the CAG expansion, no multiple regression model provided evidence of association between the Val66Met genotype and variation in age-at-onset. Additional studies are warranted to further investigate BDNF as genetic modifier of the HD phenotype.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/genética , Predisposición Genética a la Enfermedad/genética , Variación Genética/genética , Enfermedad de Huntington/epidemiología , Enfermedad de Huntington/genética , Polimorfismo Genético/genética , Adolescente , Adulto , Edad de Inicio , Sustitución de Aminoácidos/genética , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/fisiopatología , Factor Neurotrófico Derivado del Encéfalo/química , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Análisis Mutacional de ADN , Femenino , Pruebas Genéticas , Genotipo , Humanos , Enfermedad de Huntington/fisiopatología , Masculino , Metionina/genética , Persona de Mediana Edad , Regiones Promotoras Genéticas/genética , Elementos Silenciadores Transcripcionales/genética , Expansión de Repetición de Trinucleótido/genética , Valina/genética
10.
Nat Rev Neurosci ; 6(12): 919-30, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16288298

RESUMEN

Several neurological diseases are characterized by the altered activity of one or a few ubiquitously expressed cell proteins, but it is not known how these normal proteins turn into harmful executors of selective neuronal cell death. We selected huntingtin in Huntington's disease to explore this question because the dominant inheritance pattern of the disease seems to exclude the possibility that the wild-type protein has a role in the natural history of this condition. However, even in this extreme case, there is considerable evidence that normal huntingtin is important for neuronal function and that the activity of some of its downstream effectors, such as brain-derived neurotrophic factor, is reduced in Huntington's disease.


Asunto(s)
Enfermedad de Huntington/metabolismo , Proteínas del Tejido Nervioso/fisiología , Proteínas Nucleares/fisiología , Animales , Modelos Animales de Enfermedad , Humanos , Proteína Huntingtina , Enfermedad de Huntington/genética , Modelos Biológicos
11.
J Neurosci ; 25(43): 9932-9, 2005 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-16251441

RESUMEN

The expansion of a polyglutamine tract in the ubiquitously expressed huntingtin protein causes Huntington's disease (HD), a dominantly inherited neurodegenerative disease. We show that the activity of the cholesterol biosynthetic pathway is altered in HD. In particular, the transcription of key genes of the cholesterol biosynthetic pathway is severely affected in vivo in brain tissue from HD mice and in human postmortem striatal and cortical tissue; this molecular dysfunction is biologically relevant because cholesterol biosynthesis is reduced in cultured human HD cells, and total cholesterol mass is significantly decreased in the CNS of HD mice and in brain-derived ST14A cells in which the expression of mutant huntingtin has been turned on. The transcription of the genes of the cholesterol biosynthetic pathway is regulated via the activity of sterol regulatory element-binding proteins (SREBPs), and we found an approximately 50% reduction in the amount of the active nuclear form of SREBP in HD cells and mouse brain tissue. As a consequence, mutant huntingtin reduces the transactivation of an SRE-luciferase construct even under conditions of SREBP overexpression or in the presence of an exogenous N-terminal active form of SREBP. Finally, the addition of exogenous cholesterol to striatal neurons expressing mutant huntingtin prevents their death in a dose-dependent manner. We conclude that the cholesterol biosynthetic pathway is impaired in HD cells, mice, and human subjects, and that the search for HD therapies should also consider cholesterol levels as both a potential target and disease biomarker.


Asunto(s)
Colesterol/biosíntesis , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Neuronas/fisiología , Análisis de Varianza , Animales , Western Blotting/métodos , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Células Cultivadas , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Relación Dosis-Respuesta a Droga , Fibroblastos/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Hidroximetilglutaril-CoA Reductasas/genética , Hidroximetilglutaril-CoA Reductasas/metabolismo , Inmunohistoquímica/métodos , Ratones , Neuronas/efectos de los fármacos , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Transporte de Proteínas/genética , ARN Mensajero/biosíntesis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Factores de Tiempo , Transfección/métodos
12.
Pharmacol Res ; 52(2): 133-9, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15967378

RESUMEN

Huntingtin is a protein of 348 kDa that is mutated in Huntington's disease (HD), a dominantly inherited neurodegenerative disorder. Previous data have led us to propose that aspects of the disease arise from both a loss of the neuroprotective function of the wild-type protein, and a toxic activity gained by the mutant protein. In particular, we have shown that wild-type huntingtin stimulates the production of brain-derived neurotrophic factor (BDNF), a pro-survival factor for the striatal neurons that die in the pathology. Wild-type huntingtin controls BDNF gene transcription in cerebral cortex, which is then delivered to its striatal targets. In the disease state, supply of cortical BDNF to the striatum is strongly reduced, possibly leading to striatal vulnerability. Here we show that a reduction in cortical BDNF messenger level correlates with the progression of the disease in a mouse model of HD. In particular, we show that the progressive loss of mRNAs transcribed from BDNF exon II, III and IV follows a different pattern that may reflect different upstream mechanisms impaired by mutation in huntingtin. On this basis, we also discuss the possibility that delivery of BDNF may represent an useful strategy for Huntington's disease treatment.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Empalme Alternativo , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Corteza Cerebral/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Expresión Génica , Enfermedad de Huntington/genética , Ratones , Ratones Transgénicos , ARN Mensajero/análisis , ARN Mensajero/metabolismo
13.
Pharmacol Res ; 52(2): 140-50, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15967379

RESUMEN

Huntington's Disease (HD) is a neurodegenerative disorder caused by an abnormally expanded polyglutamine trait in the amino-terminal region of huntingtin. Pathogenic mechanisms involve a gained toxicity of mutant huntingtin and a potentially reduced neuroprotective function of the wild-type allele. Among the molecular abnormalities reported, HD cells are characterized by the presence of aggregates, transcriptional dysregulation, altered mitochondrial membrane potential and aberrant Ca++ handling. In addition, upon exposure to toxic stimuli, increased mitochondrial release of cytochrome C and activation of caspase-9 and caspase-3 are found in HD cells and tissue. Here we report that HTRA2 and Smac/DIABLO, two additional mitochondrial pro-apoptotic factors, are aberrantly released from brain-derived cells expressing mutant huntingtin. This event causes a reduction in levels of the cytosolic IAP1 (Inhibitor of Apoptosis Protein-1) and XIAP (X-linked inhibitor apoptosis) antiapoptotic IAP family members. Reduced IAP levels are also found in post-mortem HD brain tissue. Treatment with ucf101, a serine protease HTRA2 specific inhibitor, counteracts IAPs degradation in HD cells and increases their survival. These results point to the IAPs as potential pharmacological targets in Huntington's Disease.


Asunto(s)
Proteínas Portadoras/metabolismo , Enfermedad de Huntington/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas/metabolismo , Serina Endopeptidasas/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis , Encéfalo/metabolismo , Línea Celular , Supervivencia Celular , Ciclosporina/farmacología , Citosol/metabolismo , Serina Peptidasa A2 que Requiere Temperaturas Altas , Humanos , Proteína Huntingtina , Enfermedad de Huntington/genética , Proteínas Inhibidoras de la Apoptosis , Péptidos y Proteínas de Señalización Intracelular , Ratones , Mitocondrias/metabolismo , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Pirimidinonas/farmacología , Tionas/farmacología , Ubiquitina-Proteína Ligasas , Proteína Inhibidora de la Apoptosis Ligada a X
14.
Ann N Y Acad Sci ; 1049: 39-50, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15965106

RESUMEN

The identification of intracellular molecules and soluble factors that are important for neuronal differentiation and survival are of critical importance for development of therapeutic strategies for brain diseases. First, the activity of these factors/molecules may be enhanced in vivo in the attempt to induce proper neuronal differentiation and integration of the resident stem cells. Second, these factors may be applied ex vivo to increase the recovery of neurons from stem cells. Third, for those intracellular molecules that play crucial roles in neuronal survival, identification of their downstream targets may give us the chance to develop drug screening assays that use these targets for therapeutic purposes. In recent years, it has become evident that intracellular signaling processes are critical mediators of the responses of neural stem cells and neurons to growth factors. Analysis of the mechanisms of signal transduction has led to the striking finding that a handful of conserved signaling pathways appear to be used in different combinations to specify a wide variety of tissues or cells. This review will focus on the mechanisms by which specific molecules control the transition from proliferation to differentiation of neural progenitor cells and the subsequent survival of postmitotic neurons; it also discusses how this knowledge may be exploited to increase the potential efficacy of stem cell replacement in the damaged brain.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Encefalopatías/metabolismo , Encefalopatías/terapia , Proteínas del Tejido Nervioso/metabolismo , Neuronas/fisiología , Proteínas Nucleares/metabolismo , Células Madre/fisiología , Animales , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Encefalopatías/patología , Diferenciación Celular , Humanos , Proteína Huntingtina , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Enfermedad de Huntington/terapia , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Proteínas Adaptadoras de la Señalización Shc , Transducción de Señal/fisiología , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src
15.
Pharmacol Res ; 52(3): 245-51, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15916902

RESUMEN

Treatment of neurodegenerative diseases represents a major challenge for the pharmaceutical industry. Key to developing novel and efficacious therapeutics is the discovery of new druggable targets. Toward this aim, the current drug discovery process is strongly relying on the improved understanding of disease mechanisms and on a synergistic approach with chemistry, molecular biology and robotics. In this scenario, we present the case of a newly discovered molecular mechanism that may be of interest for drug discovery programmes in Huntington's disease and other neurodegenerative diseases.


Asunto(s)
Diseño de Fármacos , Proteínas del Tejido Nervioso/metabolismo , Enfermedades Neurodegenerativas/etiología , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Animales , Células Cultivadas , Evaluación Preclínica de Medicamentos , Proteína Huntingtina , Ratones , Ratones Transgénicos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo
16.
Eur J Neurosci ; 18(5): 1093-102, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12956709

RESUMEN

Loss of huntingtin-mediated brain-derived neurotrophic factor (BDNF) gene transcription has been described in Huntington's disease (HD) [Zuccato et al. (2001) Science, 293, 493-498]. It has been shown that BDNF is synthesized in the pyramidal layer of cerebral cortex and released in the striatum [Altar et al. (1997) Nature, 389, 856-860; Conner et al. (1997) J. Neurosci., 17, 2295-2313]. Here we show the cellular localization of BDNF in huntingtin-containing neurons in normal rat brain; our double-label immunofluorescence study shows that huntingtin and BDNF are co-contained in approximately 99% of pyramidal neurons of motor cortex. In the striatum, huntingtin is expressed in 75% of neurons containing BDNF. In normal striatum we also show that BDNF is contained in cholinergic and in NOS-containing interneurons, which are relatively resistant to HD degeneration. Furthermore, we show a reduction in huntingtin and in BDNF immunoreactivity in cortical neurons after striatal excitotoxic lesion. Our data are confirmed by an ELISA study of BDNF and by a Western blot analysis of huntingtin in cortex of quinolic acid (QUIN)-lesioned hemispheres. In the lesioned striatum we describe that the striatal subpopulation of cholinergic neurons, surviving degeneration, contain BDNF. The finding that BDNF is contained in nearly all neurons that contain huntingtin in the normal cortex, along with the reduced expression of BDNF after QUIN injection of the striatum, shows that huntingtin may be required for BDNF production in cortex.


Asunto(s)
Lesiones Encefálicas/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Proteínas Nucleares/metabolismo , Ácido Quinolínico , Animales , Western Blotting , Lesiones Encefálicas/inducido químicamente , Lesiones Encefálicas/patología , Proteínas de Unión al Calcio/metabolismo , Recuento de Células , Colina O-Acetiltransferasa/metabolismo , Cuerpo Estriado/citología , Cuerpo Estriado/lesiones , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Fosfoproteína 32 Regulada por Dopamina y AMPc , Ensayo de Inmunoadsorción Enzimática , Lateralidad Funcional , Humanos , Proteína Huntingtina , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Inmunohistoquímica , Masculino , Microscopía Confocal/instrumentación , Microscopía Confocal/métodos , Corteza Motora/citología , Corteza Motora/lesiones , Corteza Motora/metabolismo , Óxido Nítrico Sintasa/metabolismo , Fosfoproteínas/metabolismo , Ratas , Ratas Wistar
17.
Nat Genet ; 35(1): 76-83, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12881722

RESUMEN

Huntingtin protein is mutated in Huntington disease. We previously reported that wild-type but not mutant huntingtin stimulates transcription of the gene encoding brain-derived neurotrophic factor (BDNF; ref. 2). Here we show that the neuron restrictive silencer element (NRSE) is the target of wild-type huntingtin activity on BDNF promoter II. Wild-type huntingtin inhibits the silencing activity of NRSE, increasing transcription of BDNF. We show that this effect occurs through cytoplasmic sequestering of repressor element-1 transcription factor/neuron restrictive silencer factor (REST/NRSF), the transcription factor that binds to NRSE. In contrast, aberrant accumulation of REST/NRSF in the nucleus is present in Huntington disease. We show that wild-type huntingtin coimmunoprecipitates with REST/NRSF and that less immunoprecipitated material is found in brain tissue with Huntington disease. We also report that wild-type huntingtin acts as a positive transcriptional regulator for other NRSE-containing genes involved in the maintenance of the neuronal phenotype. Consistently, loss of expression of NRSE-controlled neuronal genes is shown in cells, mice and human brain with Huntington disease. We conclude that wild-type huntingtin acts in the cytoplasm of neurons to regulate the availability of REST/NRSF to its nuclear NRSE-binding site and that this control is lost in the pathology of Huntington disease. These data identify a new mechanism by which mutation of huntingtin causes loss of transcription of neuronal genes.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/genética , Regulación de la Expresión Génica , Proteínas del Tejido Nervioso/fisiología , Neuronas/fisiología , Proteínas Nucleares/fisiología , Proteínas Represoras/genética , Factores de Transcripción/genética , Animales , Línea Celular , Humanos , Proteína Huntingtina , Enfermedad de Huntington/genética , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Regiones Promotoras Genéticas , Ratas , Ratas Sprague-Dawley , Proteínas Represoras/fisiología , Elementos Silenciadores Transcripcionales , Factores de Transcripción/fisiología , Transcripción Genética
18.
J Biol Chem ; 277(42): 39594-8, 2002 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-12200414

RESUMEN

Huntington's disease (HD) is caused by a polyglutamine expansion in the amino-terminal region of huntingtin. Mutant huntingtin is proteolytically cleaved by caspases, generating amino-terminal aggregates that are toxic for cells. The addition of calpains to total brain homogenates also leads to cleavage of wild-type huntingtin, indicating that proteolysis of mutant and wild-type huntingtin may play a role in HD. Here we report that endogenous wild-type huntingtin is promptly cleaved by calpains in primary neurons. Exposure of primary neurons to glutamate or 3-nitropropionic acid increases intracellular calcium concentration, leading to loss of intact full-length wild-type huntingtin. This cleavage could be prevented by calcium chelators and calpain inhibitors. Degradation of wild-type huntingtin by calcium-dependent proteases thus occurs in HD neurons, leading to loss of wild-type huntingtin neuroprotective activity.


Asunto(s)
Calcio/metabolismo , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Animales , Western Blotting , Encéfalo/metabolismo , Calcimicina/farmacología , Calpaína/metabolismo , Sistema Libre de Células , Células Cultivadas , Densitometría , Ácido Glutámico/farmacología , Proteína Huntingtina , Ionóforos/farmacología , Nitrocompuestos , Propionatos/farmacología , Unión Proteica , Ratas , Ratas Sprague-Dawley , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA