Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dev Dyn ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38721717

RESUMEN

BACKGROUND: Marsupials are a diverse and unique group of mammals, but remain underutilized in developmental biology studies, hindering our understanding of mammalian diversity. This study focuses on establishing the fat-tailed dunnart (Sminthopsis crassicaudata) as an emerging laboratory model, providing reproductive monitoring methods and a detailed atlas of its embryonic development. RESULTS: We monitored the reproductive cycles of female dunnarts and established methods to confirm pregnancy and generate timed embryos. With this, we characterized dunnart embryo development from cleavage to birth, and provided detailed descriptions of its organogenesis and heterochronic growth patterns. Drawing stage-matched comparisons with other species, we highlight the dunnarts accelerated craniofacial and limb development, characteristic of marsupials. CONCLUSIONS: The fat-tailed dunnart is an exceptional marsupial model for developmental studies, where our detailed practices for reproductive monitoring and embryo collection enhance its accessibility in other laboratories. The accelerated developmental patterns observed in the Dunnart provide a valuable system for investigating molecular mechanisms underlying heterochrony. This study not only contributes to our understanding of marsupial development but also equips the scientific community with new resources for addressing biodiversity challenges and developing effective conservation strategies in marsupials.

2.
Front Cell Dev Biol ; 12: 1353598, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38380341

RESUMEN

Introduction: During early development in most male mammals the testes move from a position near the kidneys through the abdomen to eventually reside in the scrotum. The transabdominal phase of this migration is driven by insulin-like peptide 3 (INSL3) which stimulates growth of the gubernaculum, a key ligament connecting the testes with the abdominal wall. While all marsupials, except the marsupial mole (Notoryctes typhlops), have a scrotum and fully descended testes, it is unclear if INSL3 drives this process in marsupials especially given that marsupials have a different mechanism of scrotum determination and position relative to the phallus compared to eutherian mammals. Methods: To understand if INSL3 plays a role in marsupial testicular descent we have sequenced and curated the INSL3 gene and its receptor (RXFP2) in a range of marsupials representing every order. Furthermore, we looked at single cell RNA-seq and qPCR analysis of INSL3 in the fat-tailed dunnart testis (Sminthopsis crassicaudata) to understand the location and timing of expression during development. Results: These data show a strong phylogenetic similarity between marsupial and eutherian orthologues, but not with monotreme INSL3s which were more similar to the ancestral RLN3 gene. We have also shown the genomic location of INSL3, and surrounding genes is conserved in a range of marsupials and eutherians. Single cell RNA-seq and qPCR data show that INSL3 mRNA is expressed specifically in Leydig cells and expressed at higher levels during the testicular descent phase in developing marsupials. Discussion: Together, these data argue strongly for a therian origin of INSL3 mediated testicular descent in mammals and suggests that a coordinated movement of the testes to the abdominal wall may have preceded externalization in marsupials and therian mammals.

3.
Cells ; 12(4)2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36831314

RESUMEN

A common herbicide, atrazine, is associated with poor health. Atrazine acts as an endocrine disruptor at supra-environmental levels. Little research, however, has been conducted regarding chronic exposure to environmental atrazine concentrations across generations. This study utilized comprehensive endpoint measures to investigate the effects of chronic exposure to a conservative atrazine concentration (0.02 ng/mL), measured in Australian waterways, on male mice fertility across two generations. Mice were exposed through the maternal line, from the pre-conception period and through the F1 and F2 generations until three or six months of age. Atrazine did not impact sperm function, testicular morphology nor germ cell parameters but did alter the expression of steroidogenic genes in the F1, down-regulating the expression of Cyp17a1 (Cytochrome P450 family 17, subfamily A member 1; p = 0.0008) and Ddx4 (DEAD-box helicase 4; p = 0.007), and up-regulating the expression of Star (Steroidogenic acute regulatory protein; p = 0.017). In the F2, atrazine induced up-regulation in the expression of Star (p = 0.016). The current study demonstrates that chronic exposure to an environmentally relevant atrazine concentration perturbs testicular steroid-associated gene expression that varies across generations. Future studies through the paternal and combined parental lineages should be undertaken to further elucidate the multigenerational effects of atrazine on male fertility.


Asunto(s)
Atrazina , Herbicidas , Masculino , Ratones , Animales , Atrazina/farmacología , Australia , Semen , Herbicidas/farmacología , Testículo
4.
Dev Dyn ; 251(4): 609-624, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34697862

RESUMEN

The formation of the external genitalia is a highly complex developmental process, considering it involves a wide range of cell types and results in sexually dimorphic outcomes. Development is controlled by several secreted signalling factors produced in complex spatiotemporal patterns, including the hedgehog (HH), bone morphogenic protein (BMP), fibroblast growth factor (FGF) and WNT signalling families. Many of these factors act on or are influenced by the actions of the androgen receptor (AR) that is critical to masculinisation. This complexity of expression makes it difficult to conceptualise patterns of potential importance. Mapping expression during key stages of development is needed to develop a comprehensive model of how different cell types interact in formation of external genitalia, and the global regulatory networks at play. This is particularly true in light of the sensitivity of this process to environmental disruption during key stages of development. The goal of this review is to integrate all recent studies on gene expression in early penis development to create a comprehensive spatiotemporal map. This serves as a resource to aid in visualising potentially significant interactions involved in external genital development.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog , Factores de Crecimiento de Fibroblastos/metabolismo , Genitales/metabolismo , Proteínas Hedgehog/metabolismo , Humanos , Masculino , Pene/metabolismo , Vía de Señalización Wnt
5.
Environ Res ; 194: 110694, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33385395

RESUMEN

It is becoming increasingly difficult to avoid exposure to man-made endocrine disrupting chemicals (EDCs) and environmental toxicants. This escalating yet constant exposure is postulated to partially explain the concurrent decline in human fertility that has occurred over the last 50 years. Controversy however remains as to whether associations exist, with conflicting findings commonly reported for all major EDC classes. The primary aim of this extensive work was to identify and review strong peer-reviewed evidence regarding the effects of environmentally-relevant EDC concentrations on adult male and female fertility during the critical periconception period on reproductive hormone concentrations, gamete and embryo characteristics, as well as the time to pregnancy in the general population. Secondly, to ascertain whether individuals or couples diagnosed as sub-fertile exhibit higher EDC or toxicant concentrations. Lastly, to highlight where little or no data exists that prevents strong associations being identified. From the greater than 1480 known EDCs, substantial evidence supports a negative association between exposure to phthalates, PCBs, PBDEs, pyrethroids, organochloride pesticides and male fertility and fecundity. Only moderate evidence exists for a negative association between BPA, PCBs, organochloride pesticides and female fertility and fecundity. Overall fewer studies were reported in women than men, with knowledge gaps generally evident for both sexes for all the major EDC classes, as well as a paucity of female fertility studies following exposure to parabens, triclosans, dioxins, PFAS, organophosphates and pyrethroids. Generally, sub-fertile individuals or couples exhibit higher EDC concentrations, endorsing a positive association between EDC exposure and sub-fertility. This review also discusses confounding and limiting factors that hamper our understanding of EDC exposures on fertility and fecundity. Finally, it highlights future research areas, as well as government, industry and social awareness strategies required to mitigate the negative effects of EDC and environmental toxicant exposure on human fertility and fecundity.


Asunto(s)
Disruptores Endocrinos , Contaminantes Ambientales , Adulto , Disruptores Endocrinos/toxicidad , Exposición a Riesgos Ambientales/efectos adversos , Contaminantes Ambientales/toxicidad , Femenino , Fertilidad , Humanos , Masculino , Parabenos , Embarazo
6.
Reproduction ; 161(3): 333-341, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33486468

RESUMEN

Male germ cells undergo two consecutive processes - pre-spermatogenesis and spermatogenesis - to generate mature sperm. In eutherian mammals, epigenetic information such as DNA methylation is dynamically reprogrammed during pre-spermatogenesis, before and during mitotic arrest. In mice, by the time germ cells resume mitosis, the majority of DNA methylation is reprogrammed. The tammar wallaby has a similar pattern of germ cell global DNA methylation reprogramming to that of the mouse during early pre-spermatogenesis. However, early male germline development in the tammar or in any marsupial has not been described previously, so it is unknown whether this is a general feature regulating male germline development or a more recent phenomenon in mammalian evolutionary history. To answer this, we examined germ cell nuclear morphology and mitotic arrest during male germline development in the tammar wallaby (Macropus eugenii), a marsupial that diverged from mice and humans around 160 million years ago. Tammar pro-spermatogonia proliferated after birth and entered mitotic arrest after day 30 postpartum (pp). At this time, they began moving towards the periphery of the testis cords and their nuclear size increased. Germ cells increased in number after day 100 pp which is the time that DNA methylation is known to be re-established in the tammar. This is similar to the pattern observed in the mouse, suggesting that resumption of germ cell mitosis and the timing of DNA methylation reprogramming are correlated and conserved across mammals and over long evolutionary timescales.


Asunto(s)
Células Germinativas , Macropodidae , Animales , Núcleo Celular , Metilación de ADN , Femenino , Macropodidae/genética , Masculino , Ratones , Espermatozoides
7.
Int J Mol Sci ; 21(4)2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-32059607

RESUMEN

Hypospadias is a failure of urethral closure within the penis occurring in 1 in 125 boys at birth and is increasing in frequency. While paracrine hedgehog signalling is implicated in the process of urethral closure, how these factors act on a tissue level to execute closure itself is unknown. This study aimed to understand the role of different hedgehog signalling members in urethral closure. The tammar wallaby (Macropus eugenii) provides a unique system to understand urethral closure as it allows direct treatment of developing offspring because mothers give birth to young before urethral closure begins. Wallaby pouch young were treated with vehicle or oestradiol (known to induce hypospadias in males) and samples subjected to RNAseq for differential expression and gene ontology analyses. Localisation of Sonic Hedgehog (SHH) and Indian Hedgehog (IHH), as well as the transcription factor SOX9, were assessed in normal phallus tissue using immunofluorescence. Normal tissue culture explants were treated with SHH or IHH and analysed for AR, ESR1, PTCH1, GLI2, SOX9, IHH and SHH expression by qPCR. Gene ontology analysis showed enrichment for bone differentiation terms in male samples compared with either female samples or males treated with oestradiol. Expression of SHH and IHH localised to specific tissue areas during development, akin to their compartmentalised expression in developing bone. Treatment of phallus explants with SHH or IHH induced factor-specific expression of genes associated with bone differentiation. This reveals a potential developmental interaction involved in urethral closure that mimics bone differentiation and incorporates discrete hedgehog activity within the developing phallus and phallic urethra.


Asunto(s)
Genitales Masculinos/crecimiento & desarrollo , Genitales Masculinos/metabolismo , Proteínas Hedgehog/metabolismo , Factores de Transcripción/metabolismo , Animales , Huesos/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Estradiol/farmacología , Femenino , Regulación del Desarrollo de la Expresión Génica , Genitales Masculinos/patología , Humanos , Hipospadias , Masculino , Pene/metabolismo , ARN Mensajero , Factor de Transcripción SOX9/metabolismo , Transducción de Señal , Uretra/metabolismo
8.
J Steroid Biochem Mol Biol ; 189: 240-247, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30654105

RESUMEN

Active vitamin D (1,25(OH)2D) has been shown to regulate numerous cell processes in mammary cells. Degradation of 1,25(OH)2D is initiated by the mitochondrial enzyme, 25-hydroxyvitamin D 24-hydroxylase (CYP24 A1), and provides local control of 1,25(OH)2D bioactivity. Several reports of the association between elevated CYP24 A1 activity and breast cancer incidence, suggest that CYP24 A1 may be a target for therapeutic intervention. Whether CYP24 A1 activity within the mammary epithelium regulates 1,25(OH)2D levels and mammary gland development is yet to shown. We have used a conditional knockout of the Cyp24a1 gene specifically in the mammary epithelium to demonstrate reduced terminal end bud number, ductal outgrowth and branching during puberty and alveologenesis at early pregnancy, by inhibiting proliferation but not apoptosis in both basal and luminal MECs. In vitro study showed increased sensitivity of luminal MECs to lower levels of 1,25(OH)2D with the ablation of Cyp24a1 activity. In summary, Cyp24a1 within MECs plays an important role in modulating postnatal and pregnancy-associated mammary gland development which provides support for inhibiting CYP24 A1 as a potential approach to activating the vitamin D pathway in breast cancer prevention and therapy.


Asunto(s)
Eliminación de Gen , Glándulas Mamarias Animales/metabolismo , Vitamina D3 24-Hidroxilasa/genética , Vitamina D/metabolismo , Animales , Proliferación Celular , Femenino , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/crecimiento & desarrollo , Glándulas Mamarias Animales/ultraestructura , Ratones , Ratones Endogámicos C57BL , Maduración Sexual , Vitamina D/análogos & derivados , Vitamina D3 24-Hidroxilasa/metabolismo
9.
J Mammary Gland Biol Neoplasia ; 24(1): 99-108, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30099649

RESUMEN

Androgens influence mammary gland development but the specific role of the androgen receptor (AR) in mammary function is largely unknown. We identified cell subsets that express AR in vivo and determined the effect of AR activation and transgenic AR inhibition on sub-populations of the normal mouse mammary epithelium by flow cytometry and immunohistochemistry. Immunolocalisation of AR with markers of lineage identity was also performed in human breast tissues. AR activation in vivo significantly decreased the proportion of basal cells, and caused an accumulation of cells that expressed a basal cell marker but exhibited morphological features of luminal identity. Conversely, in AR null mice the proportion of basal mammary epithelial cells was significantly increased. Inhibition of AR increased basal but not luminal progenitor cell activity in vitro. A small population of AR-positive cells in a basal-to-luminal phenotype transition was also evident in human breast lobules. Collectively, these data support a role for AR in promoting a luminal phenotype in mammary epithelial cells.


Asunto(s)
Células Epiteliales/metabolismo , Glándulas Mamarias Animales/fisiología , Glándulas Mamarias Humanas/fisiología , Receptores Androgénicos/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Receptor alfa de Estrógeno/metabolismo , Estro/metabolismo , Femenino , Humanos , Glándulas Mamarias Animales/citología , Glándulas Mamarias Humanas/citología , Ratones , Ratones Noqueados , Premenopausia/metabolismo , Cultivo Primario de Células , Receptores Androgénicos/genética , Receptores de Progesterona/metabolismo , Transducción de Señal/fisiología
10.
Cancer Res ; 77(13): 3417-3430, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28473532

RESUMEN

Alteration to the expression and activity of androgen receptor (AR) coregulators in prostate cancer is an important mechanism driving disease progression and therapy resistance. Using a novel proteomic technique, we identified a new AR coregulator, the transcription factor Grainyhead-like 2 (GRHL2), and demonstrated its essential role in the oncogenic AR signaling axis. GRHL2 colocalized with AR in prostate tumors and was frequently amplified and upregulated in prostate cancer. Importantly, GRHL2 maintained AR expression in multiple prostate cancer model systems, was required for cell proliferation, enhanced AR's transcriptional activity, and colocated with AR at specific sites on chromatin to regulate genes relevant to disease progression. GRHL2 is itself an AR-regulated gene, creating a positive feedback loop between the two factors. The link between GRHL2 and AR also applied to constitutively active truncated AR variants (ARV), as GRHL2 interacted with and regulated ARVs and vice versa. These oncogenic functions of GRHL2 were counterbalanced by its ability to suppress epithelial-mesenchymal transition and cell invasion. Mechanistic evidence suggested that AR assisted GRHL2 in maintaining the epithelial phenotype. In summary, this study has identified a new AR coregulator with a multifaceted role in prostate cancer, functioning as an enhancer of the oncogenic AR signaling pathway but also as a suppressor of metastasis-related phenotypes. Cancer Res; 77(13); 3417-30. ©2017 AACR.


Asunto(s)
Proteínas de Unión al ADN/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Factores de Transcripción/genética , Animales , Línea Celular Tumoral , Proliferación Celular , Embrión de Pollo , Proteínas de Unión al ADN/metabolismo , Humanos , Masculino , Oncogenes , Neoplasias de la Próstata/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Factores de Transcripción/metabolismo , Transfección
11.
Mol Cell Endocrinol ; 440: 138-150, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27889472

RESUMEN

Estrogen Receptor-ß (ERß) has been implicated in many cancers. In prostate and breast cancer its function is controversial, but genetic studies implicate a role in cancer progression. Much of the confusion around ERß stems from antibodies that are inadequately validated, yet have become standard tools for deciphering its role. Using an ERß-inducible cell system we assessed commonly utilized ERß antibodies and show that one of the most commonly used antibodies, NCL-ER-BETA, is non-specific for ERß. Other antibodies have limited ERß specificity or are only specific in one experimental modality. ERß is commonly studied in MCF-7 (breast) and LNCaP (prostate) cancer cell lines, but we found no ERß expression in either, using validated antibodies and independent mass spectrometry-based approaches. Our findings question conclusions made about ERß using the NCL-ER-BETA antibody, or LNCaP and MCF-7 cell lines. We describe robust reagents, which detect ERß across multiple experimental approaches and in clinical samples.


Asunto(s)
Anticuerpos Antineoplásicos/farmacología , Receptor beta de Estrógeno/inmunología , Mama/efectos de los fármacos , Mama/metabolismo , Línea Celular Tumoral , Doxiciclina/farmacología , Receptor beta de Estrógeno/genética , Receptor beta de Estrógeno/metabolismo , Femenino , Humanos , Inmunohistoquímica , Indicadores y Reactivos , Masculino , Péptidos , Próstata/efectos de los fármacos , Próstata/metabolismo , Reproducibilidad de los Resultados
12.
Nat Rev Cancer ; 17(1): 54-64, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27885264

RESUMEN

Most breast cancers are driven by oestrogen receptor-α. Anti-oestrogenic drugs are the standard treatment for these breast cancers; however, treatment resistance is common, necessitating new therapeutic strategies. Recent preclinical and historical clinical studies support the use of progestogens to activate the progesterone receptor (PR) in breast cancers. However, widespread controversy exists regarding the role of progestogens in this disease, hindering the clinical implementation of PR-targeted therapies. Herein, we present and discuss data at the root of this controversy and clarify the confusion and misinterpretations that have consequently arisen. We then present our view on how progestogens may be safely and effectively used in treating breast cancer.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Receptor alfa de Estrógeno/metabolismo , Progestinas/metabolismo , Progestinas/uso terapéutico , Receptores de Progesterona/metabolismo , Neoplasias de la Mama/fisiopatología , Femenino , Humanos , Receptores de Progesterona/efectos de los fármacos
13.
Cancer Res ; 76(19): 5881-5893, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27496708

RESUMEN

Glucuronidation is an enzymatic process that terminally inactivates steroid hormones, including estrogens and androgens, thereby influencing carcinogenesis in hormone-dependent cancers. While estrogens drive breast carcinogenesis via the estrogen receptor alpha (ERα), androgens play a critical role as prohormones for estrogen biosynthesis and ligands for the androgen receptor (AR). In this study, the expression and regulation of two androgen-inactivating enzymes, the UDP-glucuronosyltransferases UGT2B15 and UGT2B17, was assessed in breast cancer. In large clinical cohorts, high UGT2B15 and UGT2B17 levels positively influenced disease-specific survival in distinct molecular subgroups. Expression of these genes was highest in cases positive for ERα. In cell line models, ERα, AR, and the transcription factor FOXA1 cooperated to increase transcription via tandem binding events at their proximal promoters. ERα activity was dependent on FOXA1, facilitated by AR activation, and potently stimulated by estradiol as well as estrogenic metabolites of 5α-dihydrotestosterone. AR activity was mediated via binding to an estrogen receptor half-site 3' to the FOXA1 and ERα-binding sites. Although AR and FOXA1 bound the UGT promoters in AR-positive/ERα-negative breast cancer cell lines, androgen treatment did not influence basal transcription levels. Ex vivo culture of human breast tissue and ERα+ tumors provided evidence for upregulation of UGT2B15 and UGT2B17 by estrogen or androgen treatment. ERα binding was evident at the promoters of these genes in a small cohort of primary tumors and distant metastases. Collectively, these data provide insight into sex steroid receptor-mediated regulation of androgen-inactivating enzymes in ERα+ breast cancer, which may have subtype-specific consequences for disease progression and outcomes. Cancer Res; 76(19); 5881-93. ©2016 AACR.


Asunto(s)
Neoplasias de la Mama/enzimología , Receptor alfa de Estrógeno/análisis , Glucuronosiltransferasa/fisiología , Antígenos de Histocompatibilidad Menor/fisiología , Receptores Androgénicos/análisis , Anilidas/farmacología , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Glucuronosiltransferasa/genética , Factor Nuclear 3-alfa del Hepatocito/fisiología , Humanos , Antígenos de Histocompatibilidad Menor/genética , Regiones Promotoras Genéticas , Receptor ErbB-2/análisis
14.
Oncotarget ; 6(42): 44728-44, 2015 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-26554309

RESUMEN

The importance of androgen receptor (AR) signaling is increasingly being recognized in breast cancer, which has elicited clinical trials aimed at assessing the efficacy of androgen deprivation therapy (ADT) for metastatic disease. In prostate cancer, resistance to ADT is frequently associated with the emergence of androgen-independent splice variants of the AR (AR variants, AR-Vs) that lack the LBD and are constitutively active. Women with breast cancer may be prone to a similar phenomenon. Herein, we show that in addition to the prototypical transcript, the AR gene produces a diverse range of AR-V transcripts in primary breast tumors. The most frequently and highly expressed variant was AR-V7 (exons 1/2/3/CE3), which was detectable at the mRNA level in > 50% of all breast cancers and at the protein level in a subset of ERα-negative tumors. Functionally, AR-V7 is a constitutively active and ADT-resistant transcription factor that promotes growth and regulates a transcriptional program distinct from AR in ERα-negative breast cancer cells. Importantly, we provide ex vivo evidence that AR-V7 is upregulated by the AR antagonist enzalutamide in primary breast tumors. These findings have implications for treatment response in the ongoing clinical trials of ADT in breast cancer.


Asunto(s)
Neoplasias de la Mama/metabolismo , Receptores Androgénicos/metabolismo , Antagonistas de Andrógenos/farmacología , Antineoplásicos Hormonales/farmacología , Benzamidas , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Bases de Datos Genéticas , Resistencia a Antineoplásicos , Receptor alfa de Estrógeno/metabolismo , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Células MCF-7 , Nitrilos , Feniltiohidantoína/análogos & derivados , Feniltiohidantoína/farmacología , Isoformas de Proteínas , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores Androgénicos/efectos de los fármacos , Receptores Androgénicos/genética , Transducción de Señal , Factores de Tiempo , Transcripción Genética , Transfección
15.
J Mammary Gland Biol Neoplasia ; 20(1-2): 75-91, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26390871

RESUMEN

The hormone-sensing mammary epithelial cell (HS-MEC-expressing oestrogen receptor-alpha (ERα) and progesterone receptor (PGR)) is often represented as being terminally differentiated and lacking significant progenitor activity after puberty. Therefore while able to profoundly influence the proliferation and function of other MEC populations, HS-MECs are purported not to respond to sex hormone signals by engaging in significant cell proliferation during adulthood. This is a convenient and practical simplification that overshadows the sublime, and potentially critical, phenotypic plasticity found within the adult HS-MEC population. This concept is exemplified by the large proportion (~80 %) of human breast cancers expressing PGR and/or ERα, demonstrating that HS-MECs clearly proliferate in the context of breast cancer. Understanding how HS-MEC proliferation and differentiation is driven could be key to unraveling the mechanisms behind uncontrolled HS-MEC proliferation associated with ERα- and/or PGR-positive breast cancers. Herein we review evidence for the existence of a HS-MEC progenitor and the emerging plasticity of the HS-MEC population in general. This is followed by an analysis of hormones other than oestrogen and progesterone that are able to influence HS-MEC proliferation and differentiation: androgens, prolactin and transforming growth factor-beta1.


Asunto(s)
Neoplasias de la Mama/metabolismo , Células Epiteliales/metabolismo , Receptor alfa de Estrógeno/metabolismo , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Humanas/metabolismo , Receptores de Progesterona/metabolismo , Andrógenos/metabolismo , Animales , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Diferenciación Celular , Plasticidad de la Célula , Proliferación Celular , Subunidades alfa del Factor de Unión al Sitio Principal/metabolismo , Proteínas de Unión al ADN/metabolismo , Femenino , Factor de Transcripción GATA3/metabolismo , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Humanos , Prolactina/metabolismo , Proteínas Proto-Oncogénicas c-ets/metabolismo , Proteínas de Dominio T Box/metabolismo , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
17.
Nature ; 523(7560): 313-7, 2015 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-26153859

RESUMEN

Progesterone receptor (PR) expression is used as a biomarker of oestrogen receptor-α (ERα) function and breast cancer prognosis. Here we show that PR is not merely an ERα-induced gene target, but is also an ERα-associated protein that modulates its behaviour. In the presence of agonist ligands, PR associates with ERα to direct ERα chromatin binding events within breast cancer cells, resulting in a unique gene expression programme that is associated with good clinical outcome. Progesterone inhibited oestrogen-mediated growth of ERα(+) cell line xenografts and primary ERα(+) breast tumour explants, and had increased anti-proliferative effects when coupled with an ERα antagonist. Copy number loss of PGR, the gene coding for PR, is a common feature in ERα(+) breast cancers, explaining lower PR levels in a subset of cases. Our findings indicate that PR functions as a molecular rheostat to control ERα chromatin binding and transcriptional activity, which has important implications for prognosis and therapeutic interventions.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Receptor alfa de Estrógeno/metabolismo , Regulación Neoplásica de la Expresión Génica , Receptores de Progesterona/metabolismo , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cromatina/efectos de los fármacos , Cromatina/genética , Cromatina/metabolismo , Variaciones en el Número de Copia de ADN/genética , Progresión de la Enfermedad , Receptor alfa de Estrógeno/antagonistas & inhibidores , Estrógenos/metabolismo , Estrógenos/farmacología , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ligandos , Ratones , Progesterona/metabolismo , Progesterona/farmacología , Unión Proteica/efectos de los fármacos , Receptores de Progesterona/genética , Transcripción Genética/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Endocr Relat Cancer ; 21(4): T183-202, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25001242

RESUMEN

While it has been known for decades that androgen hormones influence normal breast development and breast carcinogenesis, the underlying mechanisms have only been recently elucidated. To date, most studies have focused on androgen action in breast cancer cell lines, yet these studies represent artificial systems that often do not faithfully replicate/recapitulate the cellular, molecular and hormonal environments of breast tumours in vivo. It is critical to have a better understanding of how androgens act in the normal mammary gland as well as in in vivo systems that maintain a relevant tumour microenvironment to gain insights into the role of androgens in the modulation of breast cancer development. This in turn will facilitate application of androgen-modulation therapy in breast cancer. This is particularly relevant as current clinical trials focus on inhibiting androgen action as breast cancer therapy but, depending on the steroid receptor profile of the tumour, certain individuals may be better served by selectively stimulating androgen action. Androgen receptor (AR) protein is primarily expressed by the hormone-sensing compartment of normal breast epithelium, commonly referred to as oestrogen receptor alpha (ERa (ESR1))-positive breast epithelial cells, which also express progesterone receptors (PRs) and prolactin receptors and exert powerful developmental influences on adjacent breast epithelial cells. Recent lineage-tracing studies, particularly those focussed on NOTCH signalling, and genetic analysis of cancer risk in the normal breast highlight how signalling via the hormone-sensing compartment can influence normal breast development and breast cancer susceptibility. This provides an impetus to focus on the relationship between androgens, AR and NOTCH signalling and the crosstalk between ERa and PR signalling in the hormone-sensing component of breast epithelium in order to unravel the mechanisms behind the ability of androgens to modulate breast cancer initiation and growth.


Asunto(s)
Andrógenos/farmacología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Receptores Notch/fisiología , Antineoplásicos Hormonales/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Resistencia a Antineoplásicos/genética , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Glándulas Mamarias Humanas/efectos de los fármacos , Glándulas Mamarias Humanas/crecimiento & desarrollo , Glándulas Mamarias Humanas/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
19.
Breast Cancer Res ; 16(1): R1, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24398145

RESUMEN

INTRODUCTION: Parity-identified mammary epithelial cells (PI-MECs) are an interesting cellular subset because they survive involution and are a presumptive target for transformation by human epidermal growth factor receptor 2 (HER2)/neu in mammary tumors. Depending on the type of assay, PI-MECs have been designated lobule-restricted progenitors or multipotent stem/progenitor cells. PI-MECs were reported to be part of the basal population of mammary epithelium based on flow cytometry. We investigated the cellular identity and lineage potential of PI-MECs in intact mammary glands. METHODS: We performed a quantitative and qualitative analysis of the contribution of PI-MECs to mammary epithelial cell lineages in pregnant and involuted mammary glands by immunohistochemistry, fluorescence-activated cells sorting (FACS), and quantitative polymerase chain reaction. PI-MECs were labeled by the activation of Whey Acidic Protein (WAP)-Cre during pregnancy that results in permanent expression of yellow fluorescent protein. RESULTS: After involution, PI-MECs are present exclusively in the luminal layer of mammary ducts. During pregnancy, PI-MECs contribute to the luminal layer but not the basal layer of alveolar lobules. Strikingly, whereas all luminal estrogen receptor (ER)-negative cells in an alveolus can be derived from PI-MECs, the alveolar ER-positive cells are unlabeled and reminiscent of Notch2-traced L cells. Notably, we observed a significant population of unlabeled alveolar progenitors that resemble PI-MECs based on transcriptional and histological analysis. CONCLUSIONS: Our demonstration that PI-MECs are luminal cells underscores that not only basal cells display multi-lineage potential in transplantation assays. However, the lineage potential of PI-MECs in unperturbed mammary glands is remarkably restricted to luminal ER-negative cells of the secretory alveolar lineage. The identification of an unlabeled but functionally similar population of luminal alveolar progenitor cells raises the question of whether PI-MECs are a unique population or the result of stochastic labeling. Interestingly, even when all luminal ER-negative cells of an alveolus are PI-MEC-derived, the basal cells and hormone-sensing cells are derived from a different source, indicating that cooperative outgrowth of cells from different lineages is common in alveologenesis.


Asunto(s)
Proteínas Bacterianas/genética , Linaje de la Célula , Células Epiteliales/citología , Proteínas Luminiscentes/genética , Glándulas Mamarias Animales/citología , Células Madre Multipotentes/citología , Animales , Antígeno CD24/metabolismo , Caseínas/metabolismo , Diferenciación Celular , Proteínas de Unión al ADN/metabolismo , Femenino , Citometría de Flujo , Integrina alfa6/metabolismo , Ratones , Ratones Transgénicos , Proteínas de la Leche/farmacología , Paridad , Embarazo , Receptores de Estrógenos/metabolismo , Factores de Transcripción/metabolismo
20.
Spermatogenesis ; 3(1): e24014, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23687617

RESUMEN

It is widely held that the somatic cell population that is responsible for sperm development and output (Sertoli cells) is terminally differentiated and unmodifiable in adults. It is postulated, with little evidence, that Sertoli cells are not terminally differentiated in some phenotypes of infertility and testicular cancer. This study sought to compare markers of Sertoli cell differentiation in normospermic men, oligospermic men (undergoing gonadotropin suppression) and testicular carcinoma in situ (CIS) and seminoma samples. Confocal microscopy was used to assess the expression of markers of proliferation (PCNA and Ki67) and functional differentiation (androgen receptor). As additional markers of differentiation, the organization of Sertoli cell tight junction and associated proteins were assessed in specimens with carcinoma in situ. In normal men, Sertoli cells exhibited a differentiated phenotype (i.e., PCNA and Ki67 negative, androgen 40 receptor positive). However, after long-term gonadotropin suppression, 1.7 ± 0.6% of Sertoli cells exhibited PCNA reactivity associated with a diminished immunoreactivity in androgen receptor, suggesting an undifferentiated phenotype. Ki67-positive Sertoli cells were also observed. PCNA-positive Sertoli cells were never observed in tubules with carcinoma in situ, and only rarely observed adjacent to seminoma. Tight junction protein localization (claudin 11, JAM-A and ZO-1) was altered in CIS, with a reduction in JAM-A reactivity in Sertoli cells from tubules with CIS and the emergence of strong JAM-A reactivity in seminoma. These findings indicate that adult human Sertoli cells exhibit characteristics of an undifferentiated state in oligospermic men and patients with CIS and seminoma in the presence of germ cell neoplasia.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...