Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dev Cell ; 59(8): 1043-1057.e8, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38508182

RESUMEN

Control of protein stoichiometry is essential for cell function. Mitochondrial oxidative phosphorylation (OXPHOS) presents a complex stoichiometric challenge as the ratio of the electron transport chain (ETC) and ATP synthase must be tightly controlled, and assembly requires coordinated integration of proteins encoded in the nuclear and mitochondrial genome. How correct OXPHOS stoichiometry is achieved is unknown. We identify the Mitochondrial Regulatory hub for respiratory Assembly (MiRA) platform, which synchronizes ETC and ATP synthase biogenesis in yeast. Molecularly, this is achieved by a stop-and-go mechanism: the uncharacterized protein Mra1 stalls complex IV assembly. Two "Go" signals are required for assembly progression: binding of the complex IV assembly factor Rcf2 and Mra1 interaction with an Atp9-translating mitoribosome induce Mra1 degradation, allowing synchronized maturation of complex IV and the ATP synthase. Failure of the stop-and-go mechanism results in cell death. MiRA controls OXPHOS assembly, ensuring correct stoichiometry of protein machineries encoded by two different genomes.


Asunto(s)
Mitocondrias , Fosforilación Oxidativa , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Mitocondrias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , ATPasas de Translocación de Protón Mitocondriales/metabolismo , ATPasas de Translocación de Protón Mitocondriales/genética , Complejo IV de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/genética , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética
2.
Methods Mol Biol ; 2615: 41-55, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36807783

RESUMEN

The isolation of organelles devoid of other cellular compartments is crucial for studying organellar proteomes and the localization of newly identified proteins, as well as for assessing specific organellar functions. Here, we describe a protocol for the isolation of crude and highly pure mitochondria from Saccharomyces cerevisiae and provide methods for testing the functional integrity of the isolated organelles.


Asunto(s)
Mitocondrias , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Fraccionamiento Celular/métodos , Mitocondrias/metabolismo , Orgánulos/metabolismo , Control de Calidad
3.
PLoS Genet ; 17(7): e1009664, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34214073

RESUMEN

Mitochondrial defects can cause a variety of human diseases and protective mechanisms exist to maintain mitochondrial functionality. Imbalances in mitochondrial proteostasis trigger a transcriptional program, termed mitochondrial unfolded protein response (mtUPR). However, the temporal sequence of events in mtUPR is unclear and the consequences on mitochondrial protein import are controversial. Here, we have quantitatively analyzed all main import pathways into mitochondria after different time spans of mtUPR induction. Kinetic analyses reveal that protein import into all mitochondrial subcompartments strongly increases early upon mtUPR and that this is accompanied by rapid remodelling of the mitochondrial signature lipid cardiolipin. Genetic inactivation of cardiolipin synthesis precluded stimulation of protein import and compromised cellular fitness. At late stages of mtUPR upon sustained stress, mitochondrial protein import efficiency declined. Our work clarifies the enigma of protein import upon mtUPR and identifies sequential mtUPR stages, in which an early increase in protein biogenesis to restore mitochondrial proteostasis is followed by late stages characterized by a decrease in import capacity upon prolonged stress induction.


Asunto(s)
Cardiolipinas/metabolismo , Transporte de Proteínas/fisiología , Respuesta de Proteína Desplegada/fisiología , Cardiolipinas/fisiología , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/fisiología , Proteínas Mitocondriales/metabolismo , Biosíntesis de Proteínas , Transporte de Proteínas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Respuesta de Proteína Desplegada/genética
4.
FEBS J ; 288(2): 600-613, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32491259

RESUMEN

The mitochondrial proteome is built and maintained mainly by import of nuclear-encoded precursor proteins. Most of these precursors use N-terminal presequences as targeting signals that are removed by mitochondrial matrix proteases. The essential mitochondrial processing protease MPP cleaves presequences after import into the organelle thereby enabling protein folding and functionality. The cleaved presequences are subsequently degraded by peptidases. While most of these processes have been discovered in yeast, characterization of the human enzymes is still scarce. As the matrix presequence peptidase PreP has been reported to play a role in Alzheimer's disease, analysis of impaired peptide turnover in human cells is of huge interest. Here, we report the characterization of HEK293T PreP knockout cells. Loss of PreP causes severe defects in oxidative phosphorylation and changes in nuclear expression of stress response marker genes. The mitochondrial defects upon lack of PreP result from the accumulation of presequence peptides that trigger feedback inhibition of MPP and accumulation of nonprocessed precursor proteins. Also, the mitochondrial intermediate peptidase MIP that cleaves eight residues from a subset of precursors after MPP processing is compromised upon loss of PreP suggesting that PreP also degrades MIP generated octapeptides. Investigation of the PrePR183Q patient mutation associated with neurological disorders revealed that the mutation destabilizes the protein making it susceptible to enhanced degradation and aggregation upon heat shock. Taken together, our data reveal a functional coupling between precursor processing by MPP and MIP and presequence degradation by PreP in human mitochondria that is crucial to maintain a functional organellar proteome.


Asunto(s)
Retroalimentación Fisiológica , Metaloendopeptidasas/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética , Serina Endopeptidasas/genética , Secuencia de Aminoácidos , Secuencia de Bases , Sistemas CRISPR-Cas , Fraccionamiento Celular , Proliferación Celular , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Metaloendopeptidasas/metabolismo , Mitocondrias/metabolismo , Mitocondrias/patología , Proteínas Mitocondriales/deficiencia , Mutación , Oligopéptidos/genética , Oligopéptidos/metabolismo , Fosforilación Oxidativa , Proteolisis , Serina Endopeptidasas/deficiencia , Estrés Fisiológico/genética , Peptidasa de Procesamiento Mitocondrial
5.
J Microbiol ; 58(4): 297-313, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31989543

RESUMEN

Bacilysin, as the simplest peptide antibiotic made up of only L-alanine and L-anticapsin, is produced and excreted by Bacillus subtilis under the control of quorum sensing. We analyzed bacilysin-nonproducing strain OGU1 which was obtained by bacA-targeted pMutin T3 insertion into the parental strain genome resulting in a genomic organization (bacA'::lacZ::erm::bacABCDEF) to form an IPTG-inducible bac operon. Although IPTG induction provided 3- to 5-fold increment in the transcription of bac operon genes, no bacilysin activity was detectable in bioassays and inability of the OGU1 to form bacilysin was confirmed by UPLC-mass spectrometry analysis. Phenotypic analyses revealed the deficiencies in OGU1 with respect to colony pigmentation, spore coat proteins, spore resistance and germination, which could be rescued by external addition of bacilysin concentrate into its cultures. 2DE MALDI-TOF/MS and nanoLC-MS/MS were used as complementary approaches to compare cytosolic proteomes of OGU1. 2-DE identified 159 differentially expressed proteins corresponding to 121 distinct ORFs. In nanoLC-MS/MS, 76 proteins were differentially expressed in OGU1. Quantitative transcript analyses of selected genes validated the proteomic findings. Overall, the results pointed to the impact of bacilysin on expression of certain proteins of sporulation and morphogenesis; the members of mother cell compartment-specific σE and σK regulons in particular, quorum sensing and two component-global regulatory systems, peptide transport, stress response as well as CodY- and ScoC-regulated proteins.


Asunto(s)
Bacillus subtilis/genética , Pleiotropía Genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dipéptidos/genética , Dipéptidos/fisiología , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Operón , Proteómica , Percepción de Quorum/genética , Esporas Bacterianas/metabolismo
6.
Mol Cell Oncol ; 7(1): 1698256, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31993502

RESUMEN

Mitochondrial proteostasis is essential for survival, and imbalances can result in severe human diseases. We identified a novel stress response triggered upon accumulation of proteotoxic aggregates in the mitochondrial matrix. Mitochondria-to-nucleus signaling results in a transcriptional response and translocation of a nuclear transcription factor into mitochondria to maintain mitochondrial gene expression.

7.
Mol Cell ; 77(1): 180-188.e9, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31630969

RESUMEN

The mitochondrial proteome is built mainly by import of nuclear-encoded precursors, which are targeted mostly by cleavable presequences. Presequence processing upon import is essential for proteostasis and survival, but the consequences of dysfunctional protein maturation are unknown. We find that impaired presequence processing causes accumulation of precursors inside mitochondria that form aggregates, which escape degradation and unexpectedly do not cause cell death. Instead, cells survive via activation of a mitochondrial unfolded protein response (mtUPR)-like pathway that is triggered very early after precursor accumulation. In contrast to classical stress pathways, this immediate response maintains mitochondrial protein import, membrane potential, and translation through translocation of the nuclear HMG-box transcription factor Rox1 to mitochondria. Rox1 binds mtDNA and performs a TFAM-like function pivotal for transcription and translation. Induction of early mtUPR provides a reversible stress model to mechanistically dissect the initial steps in mtUPR pathways with the stressTFAM Rox1 as the first line of defense.


Asunto(s)
Mitocondrias/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Respuesta de Proteína Desplegada/fisiología , Muerte Celular/fisiología , Núcleo Celular/metabolismo , ADN Mitocondrial/metabolismo , Potenciales de la Membrana/fisiología , Biosíntesis de Proteínas/fisiología , Saccharomyces cerevisiae/metabolismo , Transcripción Genética/fisiología
8.
Nat Commun ; 8(1): 290, 2017 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-28819139

RESUMEN

The mitochondrial proteome comprises ~1000 (yeast)-1500 (human) different proteins, which are distributed into four different subcompartments. The sublocalization of these proteins within the organelle in most cases remains poorly defined. Here we describe an integrated approach combining stable isotope labeling, various protein enrichment and extraction strategies and quantitative mass spectrometry to produce a quantitative map of submitochondrial protein distribution in S. cerevisiae. This quantitative landscape enables a proteome-wide classification of 986 proteins into soluble, peripheral, and integral mitochondrial membrane proteins, and the assignment of 818 proteins into the four subcompartments: outer membrane, inner membrane, intermembrane space, or matrix. We also identified 206 proteins that were not previously annotated as localized to mitochondria. Furthermore, the protease Prd1, misannotated as intermembrane space protein, could be re-assigned and characterized as a presequence peptide degrading enzyme in the matrix.Protein localization plays an important role in the regulation of cellular physiology. Here the authors use an integrated proteomics approach to localize proteins to the mitochondria and provide a detailed map of their specific localization within the organelle.


Asunto(s)
Proteínas Mitocondriales/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Humanos , Immunoblotting , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/metabolismo , Espectrometría de Masas en Tándem
9.
Mol Biol Cell ; 28(8): 997-1002, 2017 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-28228553

RESUMEN

Approximately 70% of mitochondrial precursor proteins are imported from the cytosol via N-terminal presequences, which are cleaved upon exposure to the mitochondrial processing protease MPP in the matrix. Cleaved presequence peptides then need to be efficiently degraded, and impairment of this clearance step, for example, by amyloid ß peptides, causes feedback inhibition of MPP, leading ultimately to accumulation of immature precursor proteins within mitochondria. Degradation of mitochondrial peptides is performed by Cym1 in yeast and its homologue, PreP, in humans. Here we identify the novel mitochondrial matrix protease Ste23 in yeast, a homologue of human insulin-degrading enzyme, which is required for efficient peptide degradation. Ste23 and Cym1 tightly cooperate to ensure the correct functioning of the essential presequence processing machinery.


Asunto(s)
Metaloendopeptidasas/metabolismo , Mitocondrias/metabolismo , Productos Finales de Degradación de Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Humanos , Metaloproteasas/metabolismo , Mitocondrias/enzimología , Péptidos/metabolismo , Precursores de Proteínas/metabolismo , Proteolisis , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo , Peptidasa de Procesamiento Mitocondrial
10.
Cell Metab ; 20(4): 662-9, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25176146

RESUMEN

Most mitochondrial proteins possess N-terminal presequences that are required for targeting and import into the organelle. Upon import, presequences are cleaved off by matrix processing peptidases and subsequently degraded by the peptidasome Cym1/PreP, which also degrades Amyloid-beta peptides (Aß). Here we find that impaired turnover of presequence peptides results in feedback inhibition of presequence processing enzymes. Moreover, Aß inhibits degradation of presequence peptides by PreP, resulting in accumulation of mitochondrial preproteins and processing intermediates. Dysfunctional preprotein maturation leads to rapid protein degradation and an imbalanced organellar proteome. Our findings reveal a general mechanism by which Aß peptide can induce the multiple diverse mitochondrial dysfunctions accompanying Alzheimer's disease.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Metaloproteasas/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Serina Endopeptidasas/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Encéfalo/metabolismo , Humanos , Metaloproteasas/antagonistas & inhibidores , Metaloproteasas/genética , Ratones , Ratones Endogámicos C57BL , Proteínas Mitocondriales/antagonistas & inhibidores , Mutación , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/genética , Superóxido Dismutasa/metabolismo
11.
EMBO J ; 32(23): 3041-54, 2013 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-24129513

RESUMEN

Malfunctioning of the protein α-synuclein is critically involved in the demise of dopaminergic neurons relevant to Parkinson's disease. Nonetheless, the precise mechanisms explaining this pathogenic neuronal cell death remain elusive. Endonuclease G (EndoG) is a mitochondrially localized nuclease that triggers DNA degradation and cell death upon translocation from mitochondria to the nucleus. Here, we show that EndoG displays cytotoxic nuclear localization in dopaminergic neurons of human Parkinson-diseased patients, while EndoG depletion largely reduces α-synuclein-induced cell death in human neuroblastoma cells. Xenogenic expression of human α-synuclein in yeast cells triggers mitochondria-nuclear translocation of EndoG and EndoG-mediated DNA degradation through a mechanism that requires a functional kynurenine pathway and the permeability transition pore. In nematodes and flies, EndoG is essential for the α-synuclein-driven degeneration of dopaminergic neurons. Moreover, the locomotion and survival of α-synuclein-expressing flies is compromised, but reinstalled by parallel depletion of EndoG. In sum, we unravel a phylogenetically conserved pathway that involves EndoG as a critical downstream executor of α-synuclein cytotoxicity.


Asunto(s)
Apoptosis , Endodesoxirribonucleasas/metabolismo , Neuroblastoma/patología , Neuronas/metabolismo , Enfermedad de Parkinson/patología , Sustancia Negra/patología , alfa-Sinucleína/metabolismo , Anciano , Animales , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Daño del ADN/genética , Dopamina/farmacología , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Endodesoxirribonucleasas/genética , Humanos , Immunoblotting , Técnicas para Inmunoenzimas , Mitocondrias/metabolismo , Mitocondrias/patología , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuronas/citología , Estrés Oxidativo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Sustancia Negra/metabolismo , Células Tumorales Cultivadas , alfa-Sinucleína/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...