Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiol Res ; 263: 127112, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35810656

RESUMEN

TriR serves as a repressor for a resistance-nodulation-cell division (RND) efflux pump TriABC involved in triclosan (TCS) resistance in Agrobacterium tumefaciens. The triR gene is transcribed divergently from the triABC operon. TriR specifically bound to the triR-triA intergenic region, at an imperfect 10 bp inverted repeat, 5'-TTGACTAttC-GgtTAGTCAA-3' (TriR box), that was revealed by DNase I footprinting and electrophoretic mobility shift assay. TCS treatment appeared to up-regulate triR and triABC expression, via preventing TriR binding to the triR-triA intergenic region. Promoter-lacZ fusions and ß-galactosidase activity assay further demonstrated TriR-mediated repression of triABC and triR autoregulation. Site-directed mutagenesis confirmed the identified TriR box is essential for TriR repression. A. tumefaciens mutant strains disrupting either triR or triA were constructed to determine their biological functions. The triA mutant showed hypersensitivity to TCS and sodium dodecyl sulfate (SDS), whereas the triR mutant was hyper-resistant, compared to wild-type. In addition to TCS and SDS, overproduction of TriABC from a multi-copy plasmid conferred enhanced resistance to a quaternary ammonium compound, benzalkonium chloride. Molecular modelling was able to predict the model of TriR and docking simulations were able to anticipate plausible binding interactions between TriR and TCS ligand.


Asunto(s)
Agrobacterium tumefaciens , Triclosán , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ADN Intergénico , Regulación Bacteriana de la Expresión Génica , Operón , Regiones Promotoras Genéticas , Triclosán/metabolismo , Triclosán/farmacología
3.
Anticancer Res ; 41(12): 6155-6167, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34848470

RESUMEN

BACKGROUND: The incidence of cholangiocarcinoma (CCA) is increasing worldwide and current single chemotherapeutic drug treatments are ineffective. CX-4945 and cisplatin are currently in clinical trial for CCA treatment. MATERIALS AND METHODS: We assessed the effects of the sequence of administration of CX-4945 and cisplatin applied in combination treatments on their efficacy in CCA cells in vitro. CCA cell viability was examined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. Apoptosis was examined using flow cytometry. The percentage of cells positive for phosphorylated H2A histone family member X (γ-H2AX) were measured using both flow cytometry and immunofluorescence. RESULTS: CCA cell viability was reduced to 50% after 24 h of treatments with CX-4945 and cisplatin as single agents. Interestingly, treatment with cisplatin 6 h prior to CX-4945 treatment induced significantly more DNA damage and apoptosis than CX-4945 treatment followed by cisplatin. Unexpectedly, CX-4945 treatment followed by cisplatin was less effective than single treatment in RMCCA-1 CCA cells. In addition, a 1:1 ratio of each drug was the most effective combination in these cells. CONCLUSION: These data demonstrate that the combination of CX-4945 and cis platin acts additively when cisplatin is applied first, at least in part due to increased DNA damage and apoptosis. Furthermore, treatment with CX-4945 prior to cisplatin treatment reduces the efficacy of this drug combination in CCA cells.


Asunto(s)
Antineoplásicos/uso terapéutico , Colangiocarcinoma/tratamiento farmacológico , Cisplatino/uso terapéutico , Naftiridinas/uso terapéutico , Fenazinas/uso terapéutico , Antineoplásicos/farmacología , Proliferación Celular , Cisplatino/farmacología , Combinación de Medicamentos , Sinergismo Farmacológico , Humanos , Naftiridinas/farmacología , Fenazinas/farmacología
4.
Int J Mol Sci ; 21(3)2020 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-32012688

RESUMEN

Cholangiocarcinoma (CCA) is a lethal disease with increasing incidence worldwide. Previous study showed that CCA was sensitive to adenosine. Thereby, molecular mechanisms of CCA inhibition by adenosine were examined in this study. Our results showed that adenosine inhibited CCA cells via an uptake of adenosine through equilibrative nucleoside transporters (ENTs), instead of activation of adenosine receptors. The inhibition of ENTs by NBTI caused the inhibitory effect of adenosine to subside, while adenosine receptor antagonists, caffeine and CGS-15943, failed to do so. Intracellular adenosine level was increased after adenosine treatment. Also, a conversion of adenosine to AMP by adenosine kinase is required in this inhibition. On the other hand, inosine, which is a metabolic product of adenosine has very little inhibitory effect on CCA cells. This indicates that a conversion of adenosine to inosine may reduce adenosine inhibitory effect. Furthermore, there was no specific correlation between level of proinflammatory proteins and CCA responses to adenosine. A metabolic stable analog of adenosine, 2Cl-adenosine, exerted higher inhibition on CCA cell growth. The disturbance in intracellular AMP level also led to an activation of 5' AMP-activated protein kinase (AMPK). Accordingly, we proposed a novel adenosine-mediated cancer cell growth and invasion suppression via a receptor-independent mechanism in CCA.


Asunto(s)
Adenosina/metabolismo , Colangiocarcinoma/metabolismo , Proteínas de Transporte de Nucleósidos/metabolismo , Receptores Purinérgicos P1/metabolismo , Transducción de Señal , Adenosina/farmacología , Adenosina Monofosfato/metabolismo , Conductos Biliares Intrahepáticos/citología , Conductos Biliares Intrahepáticos/metabolismo , Biomarcadores , Línea Celular Transformada , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Transformación Celular Neoplásica/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Mediadores de Inflamación/metabolismo , Transducción de Señal/efectos de los fármacos
5.
Cancers (Basel) ; 10(9)2018 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-30142881

RESUMEN

Cholangiocarcinoma is a disease with a poor prognosis and increasing incidence and hence there is a pressing unmet clinical need for new adjuvant treatments. Protein kinase CK2 (previously casein kinase II) is a ubiquitously expressed protein kinase that is up-regulated in multiple cancer cell types. The inhibition of CK2 activity using CX-4945 (Silmitasertib) has been proposed as a novel treatment in multiple disease settings including cholangiocarcinoma. Here, we show that CX-4945 inhibited the proliferation of cholangiocarcinoma cell lines in vitro. Moreover, CX-4945 treatment induced the formation of cytosolic vacuoles in cholangiocarcinoma cell lines and other cancer cell lines. The vacuoles contained extracellular fluid and had neutral pH, features characteristic of methuosis. In contrast, simultaneous knockdown of both the α and α' catalytic subunits of protein kinase CK2 using small interfering RNA (siRNA) had little or no effect on the proliferation of cholangiocarcinoma cell lines and failed to induce the vacuole formation. Surprisingly, low doses of CX-4945 increased the invasive properties of cholangiocarcinoma cells due to an upregulation of matrix metallopeptidase 7 (MMP-7), while the knockdown of CK2 inhibited cell invasion. Our data suggest that CX-4945 inhibits cell proliferation and induces cell death via CK2-independent pathways. Moreover, the increase in cell invasion brought about by CX-4945 treatment suggests that this drug might increase tumor invasion in clinical settings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...