Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Magn Reson Med ; 91(5): 1743-1760, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37876299

RESUMEN

The 2015 consensus statement published by the International Society for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group and the European Cooperation in Science and Technology ( COST) Action ASL in Dementia aimed to encourage the implementation of robust arterial spin labeling (ASL) perfusion MRI for clinical applications and promote consistency across scanner types, sites, and studies. Subsequently, the recommended 3D pseudo-continuous ASL sequence has been implemented by most major MRI manufacturers. However, ASL remains a rapidly and widely developing field, leading inevitably to further divergence of the technique and its associated terminology, which could cause confusion and hamper research reproducibility. On behalf of the ISMRM Perfusion Study Group, and as part of the ISMRM Open Science Initiative for Perfusion Imaging (OSIPI), the ASL Lexicon Task Force has been working on the development of an ASL Lexicon and Reporting Recommendations for perfusion imaging and analysis, aiming to (1) develop standardized, consensus nomenclature and terminology for the broad range of ASL imaging techniques and parameters, as well as for the physiological constants required for quantitative analysis; and (2) provide a community-endorsed recommendation of the imaging parameters that we encourage authors to include when describing ASL methods in scientific reports/papers. In this paper, the sequences and parameters in (pseudo-)continuous ASL, pulsed ASL, velocity-selective ASL, and multi-timepoint ASL for brain perfusion imaging are included. However, the content of the lexicon is not intended to be limited to these techniques, and this paper provides the foundation for a growing online inventory that will be extended by the community as further methods and improvements are developed and established.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Reproducibilidad de los Resultados , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Imagen de Perfusión/métodos , Marcadores de Spin , Circulación Cerebrovascular/fisiología , Angiografía por Resonancia Magnética/métodos , Perfusión
2.
Magn Reson Med ; 89(5): 1754-1776, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36747380

RESUMEN

This review article provides an overview of developments for arterial spin labeling (ASL) perfusion imaging in the body (i.e., outside of the brain). It is part of a series of review/recommendation papers from the International Society for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group. In this review, we focus on specific challenges and developments tailored for ASL in a variety of body locations. After presenting common challenges, organ-specific reviews of challenges and developments are presented, including kidneys, lungs, heart (myocardium), placenta, eye (retina), liver, pancreas, and muscle, which are regions that have seen the most developments outside of the brain. Summaries and recommendations of acquisition parameters (when appropriate) are provided for each organ. We then explore the possibilities for wider adoption of body ASL based on large standardization efforts, as well as the potential opportunities based on recent advances in high/low-field systems and machine-learning. This review seeks to provide an overview of the current state-of-the-art of ASL for applications in the body, highlighting ongoing challenges and solutions that aim to enable more widespread use of the technique in clinical practice.


Asunto(s)
Encéfalo , Angiografía por Resonancia Magnética , Embarazo , Femenino , Humanos , Angiografía por Resonancia Magnética/métodos , Marcadores de Spin , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Imagen por Resonancia Magnética/métodos , Perfusión , Imagen de Perfusión , Circulación Cerebrovascular/fisiología
3.
Magn Reson Med ; 89(2): 550-564, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36306334

RESUMEN

PURPOSE: To evaluate the benefits of fast spin echo (FSE) imaging over rapid gradient-echo (RAGE) for magnetization-prepared inhomogeneous magnetization transfer (ihMT) imaging. METHODS: A 3D FSE sequence was modified to include an ihMT preparation (ihMT-FSE) with an optional CSF suppression based on an inversion-recovery (ihMT-FLAIR). After numeric simulations assessing SNR benefits of FSE and the potential impact of an additional inversion-recovery, ihMT-RAGE, ihMT-FSE, and ihMT-FLAIR sequences were compared in a group of six healthy volunteers, evaluating image quality, thermal, and physiological noise as well as quantification using an ihMT saturation (ihMTsat) approach. A preliminary exploration in the cervical spinal cord was also conducted in a group of three healthy volunteers. RESULTS: Several fold improvements in thermal SNR were observed with ihMT-FSE in agreement with numerical simulations. However, we observed significantly higher physiological noise in ihMT-FSE compared to ihMT-RAGE that was mitigated in ihMT-FLAIR, which provided the best total SNR (+74% and +49% compared to ihMT-RAGE in the white and gray matter, P ≤ 0.004). IhMTsat quantification was successful in all cases with strong correlation between all sequences (r2 > 0.75). Early experiments showed potential for spinal cord imaging. CONCLUSIONS: FSE generally offers higher SNR compared to gradient-echo based acquisitions for magnetization-prepared contrasts as illustrated here in the case of ihMT. However, physiological noise has a significant effect, but an inversion-recovery-based CSF suppression was shown to be efficient in mitigating effects of CSF motion.


Asunto(s)
Sustancia Gris , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Sustancia Gris/diagnóstico por imagen , Medios de Contraste , Médula Espinal/diagnóstico por imagen , Movimiento (Física)
4.
J Neuroimaging ; 32(6): 1080-1089, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36045507

RESUMEN

BACKGROUND AND PURPOSE: Templates are a hallmark of image analysis in neuroimaging. However, while numerous structural templates exist and have facilitated single-subject and large group studies, templates based on functional contrasts, such as arterial spin labeling (ASL) perfusion, are scarce, have an inherently low spatial resolution, and are not as widely distributed. Having such tools at one's disposal is desirable, for example, in the case of studies not acquiring structural scans. We here propose an initial development of an ASL adult template based on high-resolution fast spin echo acquisitions. METHODS: High-resolution single-delay ASL, low-resolution multi-delay ASL, T1 -weighted magnetization prepared rapid acquisition 2 gradient echoes, and T2 fluid attenuated inversion recovery data were acquired in a cohort of 10 healthy volunteers (6 males and 4 females, 30± 7 years old). After offline reconstruction of high-resolution perfusion arterial transit time (ATT) and T1 maps, we built a multi-contrast template relying on the Advanced Normalization Toolbox multivariate template nonlinear construction framework. We offer examples for the registration of ASL data acquired with different sequences. Finally, we propose an ASL simulator based on our templates and a standard kinetic model that allows generating synthetic ASL contrasts based on user-specified parameters. RESULTS: Boston ASL Template and Simulator (BATS) offers high-quality, high-resolution perfusion-weighted and quantitative perfusion templates accompanied by ATT and different anatomical contrasts readily available in the Montreal Neurological Institute space. In addition, examples of use for data registration and as a synthetic contrast generator show various applications in which BATS could be used. CONCLUSIONS: We propose a new ASL template collection, named BATS, that also includes a simulator allowing the generation of synthetic ASL contrasts. BATS is available at http://github.com/manueltaso/batsasltemplate.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Adulto , Masculino , Femenino , Humanos , Adulto Joven , Marcadores de Spin , Boston , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Arterias , Circulación Cerebrovascular
5.
Magn Reson Med ; 88(5): 2021-2042, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35983963

RESUMEN

This review article provides an overview of a range of recent technical developments in advanced arterial spin labeling (ASL) methods that have been developed or adopted by the community since the publication of a previous ASL consensus paper by Alsop et al. It is part of a series of review/recommendation papers from the International Society for Magnetic Resonance in Medicine Perfusion Study Group. Here, we focus on advancements in readouts and trajectories, image reconstruction, noise reduction, partial volume correction, quantification of nonperfusion parameters, fMRI, fingerprinting, vessel selective ASL, angiography, deep learning, and ultrahigh field ASL. We aim to provide a high level of understanding of these new approaches and some guidance for their implementation, with the goal of facilitating the adoption of such advances by research groups and by MRI vendors. Topics outside the scope of this article that are reviewed at length in separate articles include velocity selective ASL, multiple-timepoint ASL, body ASL, and clinical ASL recommendations.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Circulación Cerebrovascular , Procesamiento de Imagen Asistido por Computador/métodos , Angiografía por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/métodos , Marcadores de Spin
7.
Am J Respir Crit Care Med ; 206(7): 857-873, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35671465

RESUMEN

Rationale: The leading cause of death in coronavirus disease 2019 (COVID-19) is severe pneumonia, with many patients developing acute respiratory distress syndrome (ARDS) and diffuse alveolar damage (DAD). Whether DAD in fatal COVID-19 is distinct from other causes of DAD remains unknown. Objective: To compare lung parenchymal and vascular alterations between patients with fatal COVID-19 pneumonia and other DAD-causing etiologies using a multidimensional approach. Methods: This autopsy cohort consisted of consecutive patients with COVID-19 pneumonia (n = 20) and with respiratory failure and histologic DAD (n = 21; non-COVID-19 viral and nonviral etiologies). Premortem chest computed tomography (CT) scans were evaluated for vascular changes. Postmortem lung tissues were compared using histopathological and computational analyses. Machine-learning-derived morphometric analysis of the microvasculature was performed, with a random forest classifier quantifying vascular congestion (CVasc) in different microscopic compartments. Respiratory mechanics and gas-exchange parameters were evaluated longitudinally in patients with ARDS. Measurements and Main Results: In premortem CT, patients with COVID-19 showed more dilated vasculature when all lung segments were evaluated (P = 0.001) compared with controls with DAD. Histopathology revealed vasculopathic changes, including hemangiomatosis-like changes (P = 0.043), thromboemboli (P = 0.0038), pulmonary infarcts (P = 0.047), and perivascular inflammation (P < 0.001). Generalized estimating equations revealed significant regional differences in the lung microarchitecture among all DAD-causing entities. COVID-19 showed a larger overall CVasc range (P = 0.002). Alveolar-septal congestion was associated with a significantly shorter time to death from symptom onset (P = 0.03), length of hospital stay (P = 0.02), and increased ventilatory ratio [an estimate for pulmonary dead space fraction (Vd); p = 0.043] in all cases of ARDS. Conclusions: Severe COVID-19 pneumonia is characterized by significant vasculopathy and aberrant alveolar-septal congestion. Our findings also highlight the role that vascular alterations may play in Vd and clinical outcomes in ARDS in general.


Asunto(s)
COVID-19 , Neumonía , Síndrome de Dificultad Respiratoria , Enfermedades Vasculares , COVID-19/complicaciones , Humanos , Pulmón/diagnóstico por imagen , Pulmón/patología , Alveolos Pulmonares/patología , Síndrome de Dificultad Respiratoria/etiología
8.
J Cereb Blood Flow Metab ; 41(8): 1899-1911, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33444098

RESUMEN

Methods for imaging of cerebral blood flow do not typically resolve the cortex and thus underestimate flow. However, recent work with high-resolution MRI has emphasized the regional and depth-dependent structural, functional and relaxation times variations within the cortex. Using high-resolution Arterial Spin Labeling (ASL) and T1 mapping acquisitions, we sought to probe the effects of spatial resolution and tissue heterogeneity on cortical cerebral blood flow (CBF) measurements with ASL. We acquired high-resolution (1.6mm)3 whole brain ASL data in a cohort of 10 volunteers at 3T, along with T1 and transit-time (ATT) mapping, followed by group cortical surface-based analysis using FreeSurfer of the different measured parameters. Fully resolved regional analysis showed higher than average mid-thickness CBF in primary motor areas (+15%,p<0.002), frontal regions (+17%,p<0.01) and auditory cortex, while occipital regions had lower average CBF (-20%,p<10-5). ASL signal was higher towards the pial surface but correction for the shorter T1 near the white matter surface reverses this gradient, at least when using the low-resolution ATT map. Similar to structural measures, fully-resolved ASL CBF measures show significant differences across cortical regions. Depth-dependent variation of T1 in the cortex complicates interpretation of depth-dependent ASL signal and may have implications for the accurate CBF quantification at lower resolutions.


Asunto(s)
Encéfalo/irrigación sanguínea , Circulación Cerebrovascular/fisiología , Adulto , Encéfalo/diagnóstico por imagen , Arterias Cerebrales/fisiología , Femenino , Hemodinámica/fisiología , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética/métodos , Masculino , Perfusión , Marcadores de Spin , Adulto Joven
9.
Neuroimage ; 225: 117442, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33039620

RESUMEN

BACKGROUND: Myelin specific imaging techniques to characterize white matter in demyelinating diseases such as multiple sclerosis (MS) have become an area of increasing focus. Gray matter myelination is an important marker of cortical microstructure, and its impairment is relevant in progressive MS. However, its assessment is challenging due to its thin layers. While myelin water imaging and ultra-short TE imaging have not yet been implemented to assess cortical myeloarchitecture, magnetization transfer (MT) shows promise. A recent development of the MT technique, ihMT, has demonstrated greater myelin sensitivity/specificity. Here we implemented a 3D ihMT acquisition and analysis to characterize cortical gray matter myeloarchitecture. METHODS: 20 young healthy volunteers were imaged with a 3D ihMTRAGE sequence and quantitative metrics of ihMT (ihMTsat), and dual frequency-offset MT (dual MTsat) were calculated. Cortical surface-based analysis of ihMTsat and dual MTsat were performed and compared. We also compared the cortical ihMTsat map to a cortical surface-based map of T1-weighted images (T1w), defined as a proxy of myelin content. RESULTS: Cortical ihMTsat and dual MTsat maps were in qualitative agreement with previous work and the cortical T1w map, showing higher values in primary cortices and lower values in the insula. IhMTsat and dual MTsat were significantly correlated but with important regional differences. The ratio ihMTsat/dual MTsat highlighted higher ihMTsat values in the primary cortices and sulci. CONCLUSION: ihMTsat, a quantitative metric of ihMT, can be reliably measured in cortical gray matter and shows unique contrast between cortical regions.


Asunto(s)
Corteza Cerebral/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Vaina de Mielina , Adulto , Encéfalo/diagnóstico por imagen , Femenino , Voluntarios Sanos , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Sustancia Blanca/diagnóstico por imagen , Adulto Joven
10.
Fluids Barriers CNS ; 17(1): 58, 2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32962708

RESUMEN

BACKGROUND: The choroid plexus is a major contributor to the generation of cerebrospinal fluid (CSF) and the maintenance of its electrolyte and metabolite balance. Here, we sought to characterize the blood flow dynamics of the choroid plexus using arterial spin labeling (ASL) MRI to establish ASL as a non-invasive tool for choroid plexus function and disease studies. METHODS: Seven healthy volunteers were imaged on a 3T MR scanner. ASL images were acquired with 12 labeling durations and post labeling delays. Regions of the choroid plexus were manually segmented on high-resolution T1 weighted images. Choroid plexus perfusion was characterized with a dynamic ASL perfusion model. Cerebral gray matter perfusion was also quantified for comparison. RESULTS: Kinetics of the ASL signal were clearly different in the choroid plexus than in gray matter. The choroid plexus has a significantly longer T1 than the gray matter (2.33 ± 0.30 s vs. 1.85 ± 0.10 s, p < 0.02). The arterial transit time was 1.24 ± 0.20 s at the choroid plexus. The apparent blood flow to the choroid plexus was measured to be 39.5 ± 10.1 ml/100 g/min and 0.80 ± 0.31 ml/min integrated over the posterior lateral ventricles in both hemispheres. Correction with the choroid plexus weight yielded a blood flow of 80 ml/100 g/min. CONCLUSIONS: Our findings suggest that ASL can provide a clinically feasible option to quantify the dynamic characteristics of choroid plexus blood flow. It also provides useful reference values of the choroid plexus perfusion. The long T1 of the choroid plexus may suggest the transport of water from arterial blood to the CSF, potentially providing a method to quantify CSF generation.


Asunto(s)
Circulación Cerebrovascular , Plexo Coroideo/diagnóstico por imagen , Plexo Coroideo/fisiología , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Adulto , Circulación Cerebrovascular/fisiología , Estudios de Factibilidad , Femenino , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/fisiología , Humanos , Imagen por Resonancia Magnética/normas , Masculino , Persona de Mediana Edad , Neuroimagen/normas , Marcadores de Spin
11.
Neuroimage ; 223: 117371, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32931943

RESUMEN

BACKGROUND: Arterial Spin Labeling (ASL) MRI can provide quantitative images that are sensitive to both time averaged blood flow and its temporal fluctuations. 3D image acquisitions for ASL are desirable because they are more readily compatible with background suppression to reduce noise, can reduce signal loss and distortion, and provide uniform flow sensitivity across the brain. However, single-shot 3D acquisition for maximal temporal resolution typically involves degradation of image quality through blurring or noise amplification by parallel imaging. Here, we report a new approach to accelerate a common stack of spirals 3D image acquisition by pseudo golden-angle rotation and compressed sensing reconstruction without any degradation of time averaged blood flow images. METHODS: 28 healthy volunteers were imaged at 3T with background-suppressed unbalanced pseudo-continuous ASL combined with a pseudo golden-angle Stack-of-Spirals 3D RARE readout. A fully-sampled perfusion-weighted volume was reconstructed by 3D non-uniform Fast Fourier Transform (nuFFT) followed by sum-of-squares combination of the 32 individual channels. Coil sensitivities were estimated followed by reconstruction of the 39 single-shot volumes using an L1-wavelet Compressed-Sensing reconstruction. Finally, brain connectivity analyses were performed in regions where BOLD signal suffers from low signal-to-noise ratio and susceptibility artifacts. RESULTS: Image quality, assessed with a non-reference 3D blurring metric, of full time averaged blood flow was comparable to a conventional interleaved acquisition. The temporal resolution provided by the acceleration enabled identification and quantification of resting-state networks even in inferior regions such as the amygdala and inferior frontal lobes, where susceptibility artifacts can degrade conventional resting-state fMRI acquisitions. CONCLUSION: This approach can provide measures of blood flow modulations and resting-state networks for free within any research or clinical protocol employing ASL for resting blood flow.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/diagnóstico por imagen , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Adulto , Artefactos , Encéfalo/anatomía & histología , Femenino , Humanos , Masculino , Relación Señal-Ruido , Marcadores de Spin , Adulto Joven
12.
J Magn Reson Imaging ; 51(3): 854-860, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31410924

RESUMEN

BACKGROUND: More than 100 million adults in the US suffer from prediabetes or type-2 diabetes. Noninvasive imaging of pancreas endocrine function might provide a surrogate marker of ß-cell functional integrity loss linked to this disease. PURPOSE: To noninvasively assess pancreatic blood-flow modulation following a glucose challenge using arterial spin labeling (ASL) MRI. STUDY TYPE: Prospective. SUBJECTS: Fourteen adults (30 ± 7 years old, 3M/11F, body mass index [BMI] = 24 ± 3 kg.m-2 ). FIELD STRENGTH/SEQUENCE: 3T MRI / background-suppressed pseudocontinuous PCASL preparation with single-shot fast-spin-echo (FSE) readout before and after an oral glucose challenge using either fruit juice (n = 7) or over-the-counter glucose gel (n = 7). ASSESSMENT: Subjects were fasting prior to initiation of oral stimulation, then dynamic perfusion measurements were performed every 2 minutes for 30 minutes. We quantified absolute blood flow at each timepoint. STATISTICAL TESTS: Repeated-measures analysis of variance (ANOVA) followed by paired t-tests to assess for a significant effect of glucose challenge on measured perfusion. RESULTS: Measured basal blood flow was 187 ± 53 mL/100g/min. A significant blood flow increase of +38 ± 26% was observed 10 minutes poststimulation (P < 0.05) and continuing until the end of the experiment. The gel stimulation provided the most consistent results, with an early rise followed by an additional later increase consistent with the known pancreatic insulin response to elevated blood glucose. Across-subject variations in blood flow increase were partially attributable to basal flow, with a negative correlation of r = -0.84 between basal and maximal relative flow increase in the gel group. DATA CONCLUSION: ASL can be used to measure pancreatic flow in response to a glucose challenge, which could be linked to insulin release and secretion. This paradigm might be useful to characterize disorders of glucose regulation. LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2020;51:854-860.


Asunto(s)
Glucosa , Imagen por Resonancia Magnética , Páncreas/diagnóstico por imagen , Perfusión , Estudios Prospectivos , Marcadores de Spin
13.
MAGMA ; 33(1): 141-161, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31833014

RESUMEN

OBJECTIVES: This study aimed at developing technical recommendations for the acquisition, processing and analysis of renal ASL data in the human kidney at 1.5 T and 3 T field strengths that can promote standardization of renal perfusion measurements and facilitate the comparability of results across scanners and in multi-centre clinical studies. METHODS: An international panel of 23 renal ASL experts followed a modified Delphi process, including on-line surveys and two in-person meetings, to formulate a series of consensus statements regarding patient preparation, hardware, acquisition protocol, analysis steps and data reporting. RESULTS: Fifty-nine statements achieved consensus, while agreement could not be reached on two statements related to patient preparation. As a default protocol, the panel recommends pseudo-continuous (PCASL) or flow-sensitive alternating inversion recovery (FAIR) labelling with a single-slice spin-echo EPI readout with background suppression and a simple but robust quantification model. DISCUSSION: This approach is considered robust and reproducible and can provide renal perfusion images of adequate quality and SNR for most applications. If extended kidney coverage is desirable, a 2D multislice readout is recommended. These recommendations are based on current available evidence and expert opinion. Nonetheless they are expected to be updated as more data become available, since the renal ASL literature is rapidly expanding.


Asunto(s)
Circulación Cerebrovascular , Riñón/diagnóstico por imagen , Imagen por Resonancia Magnética/tendencias , Marcadores de Spin , Investigación Biomédica Traslacional/tendencias , Algoritmos , Consenso , Técnica Delphi , Imagen Eco-Planar , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Riñón/irrigación sanguínea , Trasplante de Riñón , Angiografía por Resonancia Magnética , Estudios Multicéntricos como Asunto , Perfusión , Arteria Renal/diagnóstico por imagen , Reproducibilidad de los Resultados , Relación Señal-Ruido
14.
NMR Biomed ; 32(11): e4142, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31393649

RESUMEN

The recently-proposed MP2RAGE sequence was purposely optimized for cervical spinal cord imaging at 3T. Sequence parameters were chosen to optimize gray/white matter T1 contrast with sub-millimetric resolution and scan-time < 10 min while preserving reliable T1 determination with minimal B1+ variation effects within a range of values compatible with pathologies and surrounding structures. Results showed good agreements with IR-based measurements, high MP2RAGE-based T1 reproducibility and preliminary evidences of age- and tract-related T1 variations in the healthy spinal cord.


While T1 measurements present multiple challenges (robustness, acquisition time), the recently proposed MP2RAGE sequence (magnetization-prepared two rapid acquisition gradient echoes) has opened new perspectives to characterize tissue microstructure changes occurring in a pathological or developmental context. Extensively used for brain studies, it was herein adapted to investigate the cervical spinal cord (SC) at 3 T. By integrating Bloch equations, the MP2RAGE sequence parameters were chosen to optimize SC gray matter/white matter (GM/WM) T1 contrast with sub-millimetric resolution, a scan time less than 10 min and a reliable T1 determination with minimal B1+ variation effect, within a range of values compatible with different pathologies and surrounding structures. The residual B1+ effect on T1 values was corrected using a look-up-table approach and B1+ mapping. The accuracy of B1+ -corrected T1 measurements was assessed on a phantom with respect to conventional inversion recovery. In vivo MP2RAGE acquisitions were performed on five young (28.8 ± 4.3 years old) and five elderly (60.2 ± 2.9 years old) volunteers and analyzed using a template-based approach. Phantom experiments led to high agreements between inversion-recovery spin-echo and MP2RAGE-based T1 values (R2  = 0.997). In vivo T1 values for cervical WM, anterior GM (aGM), posterior sensory tracts (PSTs) and lateral motor tracts (LMTs) were 917 ± 29 s, 934 ± 33 ms, 920 ± 37 ms and 877 ± 35 ms, respectively, with all subjects and cervical levels considered. Significant differences were observed between aGM and LMTs, and between LMTs and PSTs, in agreement with the literature. Repeated T1 measurements demonstrated high reproducibility of the MP2RAGE in the SC (variation coefficient < 5% in all regions of interest). Finally, preliminary assessment of age-related SC tissue microstructure variation additionally showed evidence of SC atrophy and slight trends of T1 decrease with age in all regions. Overall, this study shows that fast, robust and accurate sub-millimetric resolution T1 mapping in the cervical SC using the MP2RAGE sequence is possible, paving the way for future multi-centric and longitudinal clinical studies investigating the pathological cord.


Asunto(s)
Vértebras Cervicales/diagnóstico por imagen , Imagen por Resonancia Magnética , Adulto , Simulación por Computador , Humanos , Persona de Mediana Edad , Fantasmas de Imagen , Reproducibilidad de los Resultados
15.
Magn Reson Med ; 82(2): 680-692, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30953396

RESUMEN

PURPOSE: To improve image quality and spatial coverage for abdominal perfusion imaging by implementing an arterial spin labeling (ASL) sequence that combines variable-density 3D fast-spin-echo (FSE) with Cartesian trajectory and compressed-sensing (CS) reconstruction. METHODS: A volumetric FSE sequence was modified to include background-suppressed pseudo-continuous ASL labeling and to support variable-density (VD) Poisson-disk sampling for acceleration. We additionally explored the benefits of center oversampling and variable outer k-space sampling. Fourteen healthy volunteers were scanned on a 3T scanner to test acceleration factors as well as the various sampling schemes described under synchronized-breathing to limit motion issues. A CS reconstruction was implemented using the BART toolbox to reconstruct perfusion-weighted ASL volumes, assessing the impact of acceleration, different reconstruction, and sampling strategies on image quality. RESULTS: CS acceleration is feasible with ASL, and a strong renal perfusion signal could be observed even at very high acceleration rates (≈15). We have shown that ASL k-space complex subtraction was desirable before CS reconstruction. Although averaging of multiple highly accelerated images helped to reduce artifacts from physiologic fluctuations, superior image quality was achieved by interleaving of different highly undersampled pseudo-random spatial sampling patterns and using 4D-CS reconstruction. Combination of these enhancements produces high-quality ASL volumes in under 5 min. CONCLUSIONS: High-quality isotropic ASL abdominal perfusion volumes can be obtained in healthy volunteers with a VD-FSE and CS reconstruction. This lays the groundwork for future developments toward whole abdomen free-breathing non-contrast perfusion imaging.


Asunto(s)
Abdomen/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Imagen de Perfusión/métodos , Adulto , Humanos , Riñón/diagnóstico por imagen , Fantasmas de Imagen , Marcadores de Spin , Adulto Joven
16.
Magn Reson Med ; 81(4): 2439-2449, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30474312

RESUMEN

PURPOSE: To assess the influence of background suppression and retrospective realignment on physiological noise and image quality in free-breathing renal pseudo-continuous arterial spin labeling (pCASL). METHODS: Ten subjects were scanned at 3T with a pCASL prepared single-slice coronal acquisition through the kidneys under free breathing. Multiple acquisitions were performed with various levels of residual background signal based on optimization of pulse timings to achieve specific background suppression levels (<2%, <5%, <10%, <20%). A retrospective non-rigid motion-correction strategy was also implemented. RESULTS: Decreasing level of residual background signal was associated with higher temporal SNR. The retrospective motion-correction provided an additional but not statistically significant improvement in tSNR. The highest image quality was obtained with the lowest level of residual background signal accompanied by the retrospective motion-correction, although no significant difference in quantitative renal blood-flow could be observed. CONCLUSIONS: Renal perfusion measurement with ASL under free breathing is feasible and robust against physiological noise when using strong background suppression strategies. Finally, retrospective motion-correction further improves image quality but cannot replace background suppression.


Asunto(s)
Arterias/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Riñón/irrigación sanguínea , Riñón/diagnóstico por imagen , Riñón/patología , Adulto , Algoritmos , Velocidad del Flujo Sanguíneo , Femenino , Voluntarios Sanos , Calor , Humanos , Aumento de la Imagen/métodos , Imagen por Resonancia Magnética , Masculino , Movimiento (Física) , Perfusión , Reproducibilidad de los Resultados , Respiración , Relación Señal-Ruido , Marcadores de Spin
17.
Magn Reson Med ; 81(1): 542-550, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30229559

RESUMEN

PURPOSE: To demonstrate the feasibility of noninvasively measuring pancreatic perfusion using pseudocontinuous arterial spin labeling (ASL) and to derive quantitative blood-flow and transit-time measurements in healthy volunteers. METHODS: A pseudocontinuous ASL sequence with background suppression and a single-slice single-shot fast-spin-echo readout was acquired at 3 T in 10 subjects with a single standard postlabeling delay (PLD) of 1.5 s and in 4 additional subjects with 4 PLD from 0.7 to 2 s. An imaging synchronized breathing approach was used to minimize motion artifacts during the 3 min of acquisition. Scan-rescan reproducibility was assessed in 3 volunteers with single-delay ASL. Quantitative blood flow and arterial transit time (ATT) were derived and the impact of ATT correction was studied using either subject-specific ATT in the second group or an average ATT derived from the group with multidelay ASL for subjects with single-delay ASL. RESULTS: Successful ASL acquisitions were performed in all volunteers. An average pancreatic blood flow of 201 ± 40 mL/100 g/min was measured in the single-delay group using an assumed ATT of 750 ms Average ATT measured in the multidelay group was 1029 ± 89 ms Using the longer, measured ATT reduced the measured flow to 162 ± 12 and 168 ± 28 mL/100 g/min with subject-specific or average ATT correction, respectively. ASL signal heterogeneities were observed at shorter PLD, potentially linked to its complex vascular supply and islet distribution. CONCLUSIONS: ASL enables reliable measurement of pancreatic perfusion in healthy volunteers. It presents a valuable alternative to contrast-enhanced methods and may be useful for diagnosis and characterization of several inflammatory, metabolic, and neoplastic diseases affecting the pancreas.


Asunto(s)
Aorta Abdominal/diagnóstico por imagen , Imagen por Resonancia Magnética , Páncreas/diagnóstico por imagen , Marcadores de Spin , Adulto , Algoritmos , Artefactos , Femenino , Voluntarios Sanos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Inflamación , Masculino , Movimiento (Física) , Páncreas/irrigación sanguínea , Páncreas/patología , Neoplasias Pancreáticas/diagnóstico por imagen , Perfusión , Flujo Sanguíneo Regional , Reproducibilidad de los Resultados , Respiración , Relación Señal-Ruido , Factores de Tiempo , Adulto Joven
19.
NMR Biomed ; 30(12)2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28926131

RESUMEN

In this preliminary study, our objective was to investigate the potential of high-resolution anatomical imaging, diffusion tensor imaging (DTI) and conventional/inhomogeneous magnetization transfer imaging [magnetization transfer (MT)/inhomogeneous magnetization transfer (ihMT)] at 3 T, analyzed with template-extracted regions of interest, to measure the atrophy and structural changes of white (WM) and gray (GM) matter spinal cord (SC) occurring in patients with amyotrophic lateral sclerosis (ALS). Ten patients with ALS and 20 age-matched healthy controls were recruited. SC GM and WM areas were automatically segmented using dedicated templates. Atrophy indices were evaluated from T2 *-weighted images at each vertebral level from cervical C1 to C6. DTI and ihMT metrics were quantified within the corticospinal tract (CST), posterior sensory tract (PST) and anterior GM (aGM) horns at the C2 and C5 levels. Clinical disabilities of patients with ALS were evaluated using the Revised ALS Functional Rating Scale, upper motor neuron (UMN) and Medical Research Council scorings, and correlated with MR metrics. Compared with healthy controls, GM and WM atrophy was observed in patients with ALS, especially at lower cervical levels, where a strong correlation was also observed between GM atrophy and the UMN score (R = -0.75, p = 0.05 at C6). Interestingly, a significant decrease in ihMT ratio was found in all regions of interest (p < 0.0008), fractional anisotropy (FA) and MT ratios decreased significantly in CST, especially at C5 (p < 0.005), and λ// (axial diffusivity) decreased significantly in CST (p = 0.0004) and PST (p = 0.003) at C2. Strong correlations between MRI metrics and clinical scores were also found (0.47 < |R| < 0.87, p < 0.05). Altogether, these preliminary results suggest that high-resolution anatomical imaging and ihMT imaging, in addition to DTI, are valuable for the characterization of SC tissue impairment in ALS. In this study, in addition to an important SC WM demyelination, we also observed, for the first time in ALS, impairments of cervical aGM.


Asunto(s)
Esclerosis Amiotrófica Lateral/diagnóstico por imagen , Vértebras Cervicales/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Adulto , Anciano , Femenino , Sustancia Gris/diagnóstico por imagen , Humanos , Masculino , Persona de Mediana Edad , Tractos Piramidales/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen
20.
Magn Reson Med ; 77(2): 581-591, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-26959278

RESUMEN

PURPOSE: Inhomogeneous magnetization transfer (ihMT) shows great promise for specific imaging of myelinated tissues. Whereas the ihMT technique has been previously applied in brain applications, the current report presents a strategy for cervical spinal cord (SC) imaging free of cerebrospinal fluid (CSF) pulsatility artifacts. METHODS: A pulsed ihMT preparation was combined with a single-shot HASTE readout. Electrocardiogram (ECG) synchronization was used to acquire all images during the quiescent phase of SC motion. However ihMT signal quantification errors may occur when a variable recovery delay is introduced in the sequence as a consequence of variable cardiac cycle. A semiautomatic retrospective correction algorithm, based on repetition time (TR) -matching, is proposed to correct for signal variations of long T1 -components (e.g., CSF). RESULTS: The proposed strategy combining ECG synchronization and retrospective data pairing led to clean SC images free of CSF artifacts. Lower variability of the ihMT metrics were obtained with the correction algorithm, and allowed for shorter TR to be used, hence improving signal-to-noise ratio efficiency. CONCLUSION: The proposed methodology enabled faster acquisitions, while offering robust ihMT quantification and exquisite SC image quality. This opens great perspectives for widening the in vivo characterization of SC physiopathology using MRI, such as studying white matter tracts microstructure or impairment in degenerative pathologies. Magn Reson Med 77:581-591, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Algoritmos , Artefactos , Técnicas de Imagen Sincronizada Cardíacas/métodos , Líquido Cefalorraquídeo/citología , Aumento de la Imagen/métodos , Imagen por Resonancia Magnética/métodos , Médula Espinal/anatomía & histología , Adulto , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Masculino , Movimiento (Física) , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...