Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Parasitol Drugs Drug Resist ; 25: 100548, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38805932

RESUMEN

Plasmodium falciparum aminoacyl tRNA synthetases (PfaaRSs) are potent antimalarial targets essential for proteome fidelity and overall parasite survival in every stage of the parasite's life cycle. So far, some of these proteins have been singly targeted yielding inhibitor compounds that have been limited by incidences of resistance which can be overcome via pan-inhibition strategies. Hence, herein, for the first time, we report the identification and in vitro antiplasmodial validation of Mitomycin (MMC) as a probable pan-inhibitor of class 1a (arginyl(A)-, cysteinyl(C), isoleucyl(I)-, leucyl(L), methionyl(M), and valyl(V)-) PfaaRSs which hypothetically may underlie its previously reported activity on the ribosomal RNA to inhibit protein translation and biosynthesis. We combined multiple in silico structure-based discovery strategies that first helped identify functional and druggable sites that were preferentially targeted by the compound in each of the plasmodial proteins: Ins1-Ins2 domain in Pf-ARS; anticodon binding domain in Pf-CRS; CP1-editing domain in Pf-IRS and Pf-MRS; C-terminal domain in Pf-LRS; and CP-core region in Pf-VRS. Molecular dynamics studies further revealed that MMC allosterically induced changes in the global structures of each protein. Likewise, prominent structural perturbations were caused by the compound across the functional domains of the proteins. More so, MMC induced systematic alterations in the binding of the catalytic nucleotide and amino acid substrates which culminated in the loss of key interactions with key active site residues and ultimate reduction in the nucleotide-binding affinities across all proteins, as deduced from the binding energy calculations. These altogether confirmed that MMC uniformly disrupted the structure of the target proteins and essential substrates. Further, MMC demonstrated IC50 < 5 µM against the Dd2 and 3D7 strains of parasite making it a good starting point for malarial drug development. We believe that findings from our study will be important in the current search for highly effective multi-stage antimalarial drugs.


Asunto(s)
Aminoacil-ARNt Sintetasas , Antimaláricos , Reposicionamiento de Medicamentos , Mitomicina , Plasmodium falciparum , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/enzimología , Plasmodium falciparum/genética , Aminoacil-ARNt Sintetasas/antagonistas & inhibidores , Aminoacil-ARNt Sintetasas/genética , Antimaláricos/farmacología , Antimaláricos/química , Mitomicina/farmacología , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/antagonistas & inhibidores , Simulación del Acoplamiento Molecular
2.
Microbiol Resour Announc ; 13(4): e0090323, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38509052

RESUMEN

We report the draft whole-genome assembly of Microsporidia sp. MB, a symbiotic malaria-transmission-blocking microsporidian isolated from Anopheles arabiensis in Kenya. The whole-genome sequence of Microsporidia sp. MB has a length of 5,908,979 bp, 2,335 contigs, and an average GC content of 31.12%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA